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Summaries

Normal and tangent contact pressure distributions in railroad rails and wheels, new
concepts

J.Krok
This work introduces new idea of normal and tangent forces (transverse and longitudinal traction) 

definition for smooth as well as for rough wheel/rail surfaces. The main features o f proposed idea are: 
stochastic approach, and neural network analysis used to determine load parameters.

Error controlled 3D stress analysis in railroad rails under contact loadings by the adap
tive FEM/MFDM and Fourier series. Progress report

J.Krok
Elastic solutions for a railroad wheel subject to various types of loadings simulating the true wheel/rail 

rolling contact forces may be obtained by new FEM/MFDM approximation presented here. Specially de
veloped Generalized Finite Former Method, FEM and variational version of the Meshless Finite Differ
ence Method (MFDM) are applied in the wheel cross section and Fourier series approach in the 
circumferential direction. The Fourier analysis is also used to reconstruct loads of biparabolic shape. Ra
dial, transversal and tangent loads (friction) may be considered.

New, reproducibility conditions based, meshless FDM approximation and mixed FEM/MFDM ap
proximation are given. A'posteriori error estimation technique, based on mixed FEM/MFDM approxima
tion, is introduced.

h-adaptive FEM analysis of shakedown problems modeled by Zarka's approach
W.Cecot

The paper addresses development of numerical implementation of the Zarka shakedown model. The 
resulting boundary value problem is discretized by the h-adaptive finite element method. The paper pre
sents also validation tests of the Zarka approach and its application to the analysis of selected engineering 
problems with special attention paid to reliability of the modeling as well as of the numerical analysis. The 
tests confirm possibility of a proper, for engineering purposes, estimation of residual stresses by the Zarka 
shakedown approach.

Extension of the constrained minimization shakedown model to the case of material ex
hibiting kinematic hardening. Sample engineering applications

M.Pazdanowski
An extension of the mechanical/numerical constrained minimization shakedown mechanical model to 

include the plastic strain incompressibility has been proposed and included in the algoritm. The developed 
numerical application has been tested and verified. Subsequently it has been applied to compute plastic 
strains and residual stresses in two problems interesting from the engineering point of view, i.e. "wheel 
wandering" phenomenon and sensitivity of residual stresses to changes in material constants (yield limit 
and hardening ratio).
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Error controlled 3D stress analysis in railroad wheels under contact loadings by the
adaptive FEM/MFDM and Fourier series.

J.Krok
Elastic solutions for a railroad wheel subject to various types of loadings simulating the true wheel/rail 

rolling contact forces are presented here. Specially developed Generalized Finite Fourier Method, FEM 
and variational version of the Meshless Finite Difference Method (MFDM) are applied in the wheel cross 
section and Fourier series approach in the circumferential direction. The Fourier analysis is also used to 
reconstruct loads of biparabolic shape. Radial, transversal and tangent loads (friction) may be considered.

Results of elastic stress analysis in test problems, as well as in wheels for normal contact pressure 
were given. New ajbosteriori error estimation technique, which removed main drawback o f so called 
Zienkiewicz-Zhu error estimator, has been introduced and successfully tested.

On improving the estimation of residual stresses in bodies made of material exhibiting
kinematic hardening 

M.Pazdanowski
A new approach to approximation of the solution in the area of changing mesh density has been pro

posed as the remedy to the more pronounced sensitivity of the Meshless Finite Difference Method over 
the Hybrid Finite Element Method to the changes in mesh density. Such changes are necessary, if  a large 
body with a localized loading of high intensity is to be analyzed with high accuracy. This approach, to
gether with the accompanying changes in the underlying computer code has been tested and validated. An 
application of the code to determine residual stresses and plastic strains in a vehicle wheel is presented.

Incremental analysis of residual states by the elastic-plastic constitutive models. Part I.
New element families in incremental plasticity - further research

J.Krok
The work addresses development of theory and techniques to obtain the solution of three dimensional 

elasto-plastic and elasto-viscoplastic (Perzyna's model) problems with a'posteriori error estimation, based 
on Zienkiewicz-Zhu stress recovery estimators. The 3D model has been considered.

A new family of brick elements of arbitrary order has been introduced and successfully tested on up to 
7th order.

Incremental analysis of residual states by the elastic-plastic constitutive models. Part II.
Testing of the new element families in incremental plasticity

J.Krok
The work addresses development of theory and techniques to obtain the solution of two dimensional 

elasto-plastic and elasto-viscoplastic (Perzyna's model) problems with a'posteriori error estimation, based 
on Zienkiewicz-Zhu stress recovery estimators. The 2D models (2D stress, 2D strain and axially symmet
ric case) have been considered.

The most important advantages of the above mentioned models when compared with shakedown ap
proach, lie in capability to describe various kinds of non-elastic material behavior like: creep, relaxation, 
strain softening, continuum damage and termomechanical fatigue. The models require yielding conditions 
and loading unloading criteria.

Numerical solutions o f various boundary value problems illustrate effectiveness of the MFDM in 
a'posteriori error estimation of inelastic problems for various element types like simple and higher order 
triangular and quadrilateral ones.

V



2D Incremental analysis of residual stresses in railroad rails with plastic strain harden
ing taken into account 

J.Krok
The objective of the work is to evaluate elastic and residual stresses in railroad rails, due to normal 

contact loads of different amplitudes on the rail/wheel interface, with hardening taken into account. 
Elasto-plastic analysis is performed to evaluate residual state in the railroad rails, under the assumption of 
plane stress state. Comparison of magnitudes and izolines of the axial stresses for different load levels, for 
incremental plasticity models, has been made.

h-adaptive FEM analysis of residual states in railroad rails by the Bodner-Partom consti
tutive model 

W.Cecot
The paper addresses development of numerical implementation of the Bodner-Partom rate model. The 

resulting boundary value problem is discretized by the h-adaptive Finite Element Method.
These constitutive equations were used to model such phenomena as continuum damage and ther

momechanical fatigue. The incremental results were compared with the shakedown Zarka's modeling.

Adaptive mesh generation and visualization for MFDM and FEM analysis of railroad rails
and vehicle wheels

I.Jaworska, J.Orkisz, P.Przybylski
The report presents the research on the original mesh generation method, based on mesh density con

trol. The method is designed for adaptive analysis of 2D and 3D objects, including railroad rails and vehi
cle wheels. It is capable of various mesh modifications especially focused on highly efficient multigrid 
solution approach, carried out by means of meshless FD and FE methods.

An unified approach to the adaptive meshless FDM and FEM
J.Krok, J.Orkisz

The work addresses the general topic of a Combined Adaptive Finite Element Method (AFEM) and 
Adaptive Meshless Finite Difference Method (AMFDM). Enhancement of numerical solution in both 
methods and, first of all, in a combined AFEM/AMFDM technique is considered. Several ways of possi
ble formal unification and combination of the FE and MFD methods are examined.

Several benchmarks were analyzed as well as engineering type of stress analysis in railroad rails.

On development of Moving Weighted Least Squares approximation and a’posteriori er
ror estimation in Meshless FDM 

J.Krok
The work addresses the general topic of an Adaptive Meshless Finite Difference Method (AMFDM). 

Enhancement of numerical solution in meshless methods is considered. Several different MFDM ap
proaches are examined. All MFDM approaches are oriented on determining a basic approximation matrix 
of the same type, and the full vector o f derivatives based on a linear combination of nodal unknowns. In 
the MFDM, for a given fixed point of the domain, such approximation matrix presents full set of the finite 
difference formulas for all derivatives up to required order. Several benchmarks are analyzed as well as 
engineering examples of stress analysis in railroad rails.
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Wear and grinding modeling by the Zarka shakedown model
W.Cecot

The paper addresses application of the Zarka shakedown approach to simplified analysis of grinding 
and cumulative wear. Also continuum damage is accounted for. The model was subject to further verifi
cation on the cylinder benchmark problem, then it was used for the preliminary analysis of the wear and 
grinding in railroad rails. The previous conclusions were confirmed.

Modem wear and grinding theories were briefly reviewed.

Further investigation of the rail wear and grinding process - stability tests
M.Pazdanowski

A model of grinding and cumulative wear was subject to further tests on the rail residual stress prob
lem. The wheel wandering effect and elastic-perfectly plastic material model have been chosen as the test
bed. Several grinding passes of various depths have been simulated. Cumulative effects of grinding passes 
(number of passes and thickness of single pass) are analyzed. Residual stress distributions obtained are 
presented as contour plots and in the tabular form.

Incremental analysis of an elastic-plastic bending beam rail model 
G.Midura, W.Cecot, J.Orkisz

Development of a generalized beam model for elastic-plastic analysis of railroad rails is the main ob
jective of this research. It is a part of an engineering approach to estimate residual stresses resulting from 
the roller straightening process. Proposed algorithm based on FDM will be used to analyze statically inde
terminate, elastic-plastic beams.

During the last year an incremental approach taking into account residual deformation indispensable in 
simulation of rail motion has been proposed. Algorithm based on this technique has been developed, 
tested and successfully verified in comparison with both theory and ADINA commercial code.

Application of Zarka's model to railroad rail roller straightening analysis
W.Cecot

The paper presents verification of the algorithm of a simplified roller straightening analysis. The meth
odology was applied to evaluate residual states developed during the production. The initial deformation 
due to quenching was taken into account.

An approach using GL approximation to plan the optimal locations of experimental
measurements
W.Karmowski

The analytical and numerical analysis in mechanics requires experimental verification. This work an
swers the question how to locate measurements to obtain the best result at the lowest cost o f the experi
ments and taking into consideration experiment credibility and cost. This was The task has been 
accomplished using the global -  local approximation technique. The results of this work will be applied to 
plan the railway rails and vehicle wheels experiments executed to determine residual stresses.
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Testing of the global-local method version taking into account gradient and curvature
to estimate a’posteriori error and its application to residual stress analysis in railroad

rails
W.Karmowski, J.Orkisz

The version of global-local method taking into account gradient and curvature of the sought field has 
been tested on coarse FEM/MFDM data. This technique allows to smoothen obtained solution and esti
mate a'posteriori error. It may be used to plan the new mesh in adaptive FEM/FDM methods. The 
method takes into account given nodal values and equilibrium equations simultaneously. The method has 
been used to smoothen the residual stress field in the railroad rail obtained by the MFD method.

Further development of the global approach to the physically based approximation 
technique in experimental analysis of residual stresses

J.Magiera
The report presents results of the current research effort aimed at further development of the global 

method (GM) approach to the physically based approximation technique in experimental analysis of resid
ual stresses. In the report presented are new studies o f optional criteria for selecting weighting 
factors/gate widths for experimental data (two new criteria, four algorithms proposed), another formula
tion for the break-off criteria (Stage II optimization loop, in GM formulation proposed), further tests of 
the global method as a tool for experiment planning and a posteriori estimation of experimental error (a 
new error indicator proposed).

On using the radial basis function neural network and backpropagation neural network
in analysis of residual stresses in railroad rails 

J. Kogut, J. Orkisz
A neural network approach to theoretical prediction of required residual stresses is considered here. 

Artificial neural networks trained well and long enough on residual stresses induced by various contact 
loads may provide very fast response. Results of numerical meshless finite difference analyses were pre- 
processed and introduced into the neural networks as input and output parameters. The study was per
formed for two different types of neural networks: a backpropagation neural network (BPNN) and a 
newly examined radial basis function neural network (RBF).

Reconstruction of the full 3D rail residual stress field by the physically based global
method fit to neutron diffraction data and transverse/oblique slicing data reduction

algorithm
J.Magiera

The report presents the current work regarding reconstruction of the full 3D rail residual stress field 
by the physically based global method fit to neutron diffraction data and transverse/oblique slicing data 
reduction algorithm. The work concentrated currently on analysis of the neutron diffraction data (rail 
samples #1-5) for improved quality FE/FDM grids generated recently (sample #1 analyzed as an exam
ple), certain improvements in 2D solution strategy (a'posteriori analysis of experimental error), 3D analy
sis for the case of several independent data series for a sample, and introduction to a three slice 
procedure.
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An extended adaptive procedure of experimental data collection and evaluation by
a'posteriori error estimation 

J.Krok
The work addresses extended formulation of a new approach proposed to measurements planning and 

carrying out by means of error control of experimental data.
It includes: development of postprocessing techniques to approximate data given in a discrete form, 

a'posteriori error estimation (evaluation) of measured data, estimation of new required experimental 
points location and density, definition of reliability index of experimental data.

Theoretical consideration and numerical analysis are based on the Adaptive Finite Element analysis 
(AFEM) and the Meshless Finite Difference (MFDM) approach. Differences in numerical and experimen
tal data analysis are underlying.

Reconstruction of residual stresses in railroad vehicle wheels based on enhanced saw
cut measurements 
J.Orkisz, A.Skrzat

The results obtained for all investigated wheels on coarse finite element mesh are presented. The re
sults for the wheel #3, obtained for the first time on the dense mesh are presented as well. Additionally 
benchmark tests which prove the efficiency and precision of the approach in numerical calculations of in
fluence coefficients (20-node elements, element pressures as loading) are included.

Further investigation and testing of the proposed solution approach to analysis of life
prediction of railroad rails 

W.Karmowski, J.Orkisz
Further analysis of the influence the residual stresses exert on fatigue service life of railroad rails is the 

objective of this research. The crack nucleation problem is considered basing on the classic stress-life (S- 
N) approaches. Experiments and theoretical predictions indicate that residual stresses in railroad rails can 
be large and therefore the role of these stresses is investigated. A single point wheel/rail contact at several 
rail locations is taken into account. The needed computer programs have been developed and numerical 
analyses have been carried out. The shortest life to fatigue crack nucleation was predicted for a neighbor
hood of the rail running surface (top of the rail head). The fatigue life is mostly affected by contact load
ing, while Influence of residual stresses is negligible.
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Development and application of artificial neural networks and genetic 
algorithms to analysis of residual stresses in railroad rails and vehicle

wheels.

A neural network approach to theoretical prediction of residual stresses is 
considered. Artificial neural networks trained well and long enough for residual stresses 
induced by various contact loads may provide very fast response. Results of numerical 
meshless finite difference analyses were pre-processed and introduced into the neural 
networks as input and output parameters. The study was performed for two different 
types of neural networks: a backpropagation neural network (BPNN) and a newly 
examined radial basis function neural network (RBF).

In the last year this research, carried out within the topic 2.3 on application of artificial 
neural networks to residual stress analysis in railroad rails, was temporarily suspended, 
due to temporary absence of Dr. J. Kogut. However, within the scope of the last three 
years, the following two reports.

1. On using the radial basis function neural network and backpropagation neural 
network in analysis of residual stresses in railroad rails.

2. Further improvement of the version of the global-local method including 
information on gradient and curvature of a searched field.

presented earlier describe the current state of the art of our research performed within 
this topic.
As preliminary results of this research proved to be encouraging -  especially from the 
point of view of practical applications -  further research is planned with particular 
attention paid to increasing the NN learning process efficiency.
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1. Introduction

1.1. Theoretical and experimental background of residual stress states in rails and 
wheels

Investigation of the problem of residual stresses in railroad rails is required as permanent 

increases in traffic and axle loads take place. In engineering practice improved procedures are 

adopted, for instance, replacement of jointed rail with continuous welded rail (CWR). As a 

consequence of these developments more rails now stay in service long enough to develop fatigue 

cracks. These cracks are caused mostly by the repeated action of rolling wheel contact loads, and 

can be classified as either surface or subsurface cracks. The cracking phenomena cause eventual 

deterioration of the running surface and reduction of a rail service life. Crack nucleation and 

propagation are driven by stress concentrations in a body, and may be predicted if the stresses are 

known. These stresses are the total stresses i.e. sum of the live and residual stresses (which 

remain in the body when loading is removed). In railroad rails they are generated both in 

manufacturing and service (e.g. by the rail/wheel rolling contacts).

Most rails manufactured today contain an initial residual stress field, which is distributed 

over the entire rail cross section. These stresses result from many sources, such as cooling 

process following rail forming, and roller straightening operations employed by the mills to meet 

the stringent limits imposed on the curvature of rails intended for CWR construction. The 

service-induced residual stresses (concentrated in the rail head) are superimposed over these 

stresses. The objective of this report is to present the progress of a new approach to the residual 

stress analysis in rails, principally known as an artificial intelligent system or neurocomputing.

1.2. Actual “state of the art”
Residual stresses and strains arising in both railroad rails and vehicle wheels due to 

manufacturing and service are under permanent investigation. These stresses are generated and 

modified throughout the whole rail life. Typical rail life includes the following stages [1]: 

m anufacturing (rolling process, cooling, roller-straightening), track  installation an d  maintenance 

(welding, geometry adjustment, rail replacement, destressing, grinding, and lubrication), service
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conditions (particularly repetitive wandering rail/wheel contacts and rail bending on foundation, 

and temperature changes, wear), and material degradation.

1.3. Scope
The analyzed problem concerns repetitive wandering rail/wheel contacts and rail bending 

on its foundation. Residual stresses are generated mostly due to plastic effects resulting from 

rail/wheel contact loading. Rail bending on its foundation (including possible rail/foundation 

motion) also contributes here as one of the vital factors influencing residual stresses. A theoretical 

approach, providing means for residual stress analysis, was proposed in [2], followed by the 

development of complex but effective computational solution methods. Numerical solution to 

such a problem by discrete (Finite Element - FE, Boundary Element - BE, Meshless Finite 

Difference - MFD) methods is possible, though troublesome and much computer time 

consuming. However, in engineering applications, it is often important to get almost immediate 

answers to a given input data. Therefore, a neural network approach to theoretical prediction of 

required residual stresses is considered here. It takes advantage of the fact, that artificial neural 

networks, when trained well and long enough on residual stresses induced by various contact 

loads locations may provide very fast response to a wide class of input data. A set of MFDM 

solutions was used here. Results of numerical analyses were pre-processed and introduced into 

the neural networks as input and output parameters. The study was extended to two different 

types of neural networks: a backpropagation neural network (BPNN) and a newly examined 

radial basis function neural network (RBF).

537



2. Outline of artificial neural networks

2.1. Single artificial neuron
Biological neural system able to carry information and control processes runs every 

organism living on Earth. It could be considered as a highly complex, nonlinear and parallel 

information processing system. Such a system consists of single basic elementary cells called 

neurons. In reality such neurons receive electrical signals and produce responses. In such a way 

they store and transmit information in a body.
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Figure 2.1 presents a model of the real neuron. Such a neuron consists of s y n a p s e s  and 

d e n d r ite s ,  which receive signals and transmit them into th e  c e ll  b o d y . If the accumulated signal is 

strong enough it causes the neuron to produce an action potential as an output signal in the a x o n .  

Combining pointed elements and mapping them one may arrive at the simplest artificial neuron 

(Figure 2.2). Furthermore, such neurons are joined into neural networks. One of the most 

important elements of artificial neuron is an activation function (unit) - F. The following may be 

distinguished among activation functions: 

unipolar (Figure 2.3):

f (m) =
1 i f  u > U q

0  i f  u  < Uq
(2.1)

Figure 2.3

- bipolar (signum) -  Figure 2.4: 
1 i f  u  >  0  

- 1  i f  u  < 0
F(u)  =  - (2.2)

Figure 2.4 Bipolar activation function

sigmoidal activation function -  Figure 2.5:

F(u) = --------------
1 + exp(-p,u)

(2.3)
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where: j8i - parameter;

Figure 2.5

- sigmoidal bipolar activation function -  Figure 2.6: 
F(u)= lz =xp(z M  

1 +exp(-(3Iu)

Figure 2.6 Sigmoidal bipolar activation function.

- linear:
F(u) = bu if b > 0

- radial (Figure 2.7):

Figure 2.7 Gaussian radial basis function.

(2.4)

(2.5)
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(2.6)

where
c  -  the center
<7 - the spread (support) of radial basis function.

2.2. Basic feedforward neural network
Arranged in layers, artificial neurons can be a primitive model of a biological nervous 

system and simulate in certain ways the real brain’s behaviors. The arrangement in layers 

method is the best known. In this method neurons from the preceding layer are connected only to 

the neurons in the following layer (Figure 2.8). Such a network architecture is called a 

f e e d fo r w a r d  n e u r a l  n e tw o r k .  The first layer is called the in p u t  la y er , the last one is the o u tp u t  

la y er . Between them h id d e n  la y e r s  are placed. In this kind of network signals are transmitted 

only in one direction i.e. from inputs to outputs. The process of transmission is known as training 

of the network.

Figure 2.8 Artificial neural network.

The use of neural networks is described as n e u r o c o m p u ta tio n . It has many features. One 

of them is natural massively parallel processing of information, the other is distributed processing 

and storing of information. These imply relatively low sensitivity of the neural network either to
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its partial destruction or to errors caused by noisy information. A neural network (NN) when 

properly trained (teached) is able to generalize. This means, that the network is capable of 

efficient processing of data other than that used in the training procedure. The NN is also 

proficient in adapting to new information delivered to it.

2.3. Backpropagation neural network learning algorithm

As mentioned earlier the NN must be trained properly, to be flexible in later use. This 

means that it needs to be trained in a specific way i.e. by the backpropagation  (BP) weights 

updating. The learning rule corresponding to the gradient method of the steepest descent is used 

very often (here as well). It helps in updating the multilayer NN. The least mean squared error of 

the network for a single pattern is computed as follows:

where: tt , Ot - target and computed values of i-th output 

M  - number of outputs.

Usually target values are normalized to accelerate convergence and improve the 

effectiveness of the training process. The least mean squared error of the network for all patterns 

is formulated as follows:

The weight of every neuron is adjusted according to the gradient formula in which the learning 

ra te  is included:

1 M , . 2
Elms — ~Z ̂  ( h ~ ) (2.7)

(2.8)

where: K  -  number of patterns

p  -  single pattern.

The average error is computed as follows:

(2.9)

(2.10)

where: rj -  learning rate.

Wy -  i-th weight ofy'-th layer (compare Figure 2.2)
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Moreover, a momentum term which helps to increase the speed of learning and often to avoid the 

local minimum has been applied and formula (4) is changed as follows:

Aw..CO =  -7] + aAw yis  - 1) (2.11)

where s -  iteration step number 
a  -  momentum term.

2.4. Regularization theory

An alternative method of neural network learning comes from the theory of 

regularization. It involves adding an extra term to the error function, designed to penalize 

mappings, which are not smooth [3]. In case of one single output (2.2) may have been changed 

into:

E
2 p=1

(p) (2.12)

where P is a differential operator, and v is called a regularization parameter.

Considering the fact that each input vector is mapped onto an output vector <9, and the 

goal function is

h(tw ) = 0 {p) (2.13)

it is possible to introduce a set of basis functions for each data point, which take the form 

jjc -  where <j>(-) is a nonlinear function. />-th function depends then on the Euclidean

distance pc -  x p II. The output of the mapping is the a linear combination of the basis functions

H x ) =  ' L w p(I>\x - x p I) (2.14)
P
One can solve the regularized least squares problem of (2.12) setting the functional 

derivative with respect to y(x) to zero as

£  t ( j c ( p ) )  -  0 (p) ] •  8(x -  x(p)) + v  • P-Py (x) = 0  ( 2 . 1 5 )
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where P is adjoint differential operator to P and 8 is the Dirac delta function. The equations

(2.15) are the Euler-Lagrange equation corresponding to (2.12). A formal solution to these 

equations can be written down in terms of the Green’s functions of the operator P P ,  which are 

the function G(x, x' ) ,  satisfying

P P G ( x , x ' )  = 8( x- x ' )  (2.16)

If the operator P is translationally and rotationally invariant, the Green’s functions depend 

only on the distance ||x -  xj| , and hence they are radial functions (2.6). The formal solution to

(2.15) can then be written as

t(x) = (2.17)
P

which has the form of a linear expansion into radial basis functions. Substituting (2.17) into

(2.15) and using (2.16) one can obtain

X  [f(x(/,)) -  Oip)] ■ 8(x -  x(p)) + v ■ 2  wp8 |x  -  x(/01|) = 0 (2.18)
P P

Integration over a small region around x(p) shows that the coefficients w„ satisfy 

y(x(p)) - O ip) +v-w(p) = 0 (2.19)

Afterwards, the values of w„ can be obtained as the solution of the linear equation 

( G + v I ) w = 0  (2.20)

where
(G)pp. = G(||xp' — x^||), (w)p = wp, (0)p=Cf’ and/denotes the unit matrix.
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3. Shakedown problem definition

3.1. Shakedown MFDM formulation for the residual stress solution
The theoretical as well as hybrid experimental analysis of residual stresses in railroad rails 

present complex tasks formulated in terms of non-linear constrained optimization problems. The 

shake-down mechanical model for evaluation of residual stresses in elastic-perfectly plastic 

material proposed in [2], was extended for linearly strain hardening material [4]. It is formulated 

in two steps as follows:

(i) calculate the correlation matrix Aya

°ij =Aijkr eij C3-1)

solving nonlinear constrained optimization problem for self equilibrated stress Gy as a function

of plastic distortions e,/.min ©(Gy  ) ,  0(<7y )  =  J c r ^  ■ Cy^ ■ efj ■ dV -  j e f f  ■ Gy ■ dV
°ij V V

(3.2)

satisfying the conditions

< 4 , = °

< r y j 'n j  = 0

(ii) Find £ ,/ ,

in V - internal equilibrium conditions 

on dV - static boundary conditions

which minimize the total complementary energy functional 'F(e,/):

>P(e|) = JeJ, /(J,r Cm r AM„ - e ^  d r m V
eP.ij

(3.3)

satisfying the conditions

^ AgM j- h k r c>ePgh+ ° l ) - ^
E Hwhere c  = -

in yield condition

hardening parameter, and

(3.4)

P
£U

E -H
estimated residual stresses in a body under consideration due to actual applied loads, 

plastic strains,
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akl- elastic stresses computed as if  the object behavior was purely elastic during the loading 
process,

Cijkl - elastic compliance matrix,

Ighij - unit matrix,

E - Young modulus,

H- strain hardening modulus.

3.2. MFDM theoretical-numerical solution for the US 132 RE railroad rail
Residual stresses cfij due to the contact rail/wheel load were calculated by the Meshless 

Finite Different Method MFDM [5]. The following parameters were assumed 

Young modulus E = 30 000 kpsi 

Poisson ratio v * = 0.3 

Yield limit Oo = 70 kpsi

Po = 33 000 lbf.

Figure 3.1 presents the mesh and the contact loads applied to the US 132 RE rail cross-section.

Figure 3.1 Locations of the contact loading (distributed on a patch) used in analyses, and the mesh 
applied in the rail cross-section.



The results were obtained for a certain number of different locations of the rail/wheel contact 

zone. For the different contact load locations on the railhead, theoretical-numerical solutions in 

1600 mesh-points were applied. The file of residual stresses contained four independent stress 

components located in every mesh-point. There were ten load locations altogether. One o f the

crzz/ + / I n c r . =  1
— 1.B - 1 . 2  - 0 .6  - 0 .4  0.0 0 .4 0 .6 1.2 1.5

Figure 3.2 Axial residual stress map /+/ for a single contact load computed by 
MFDM. Increment = 1 kpsi.

solutions for the axial residual stresses is presented in Figure 3.2.

3.3. Neural networks definition based on the MFDM formulation

As mentioned earlier the NN as a kind of nonlinear simulator has strong abilities to 

generalize results which were input into it, and then is capable of efficient processing of data 

other than those used in the procedure of training. Two different types of NN were examined here 

BPNN and RBF. BPNN oughts to have a well-organized structure, and its learning process may 

consume a considerable amount of time. Regarding the structure, the basic formula for the 

number of neurons in hidden layers was suggested in [6], and it included two elements: the first is 

dependent on the number of inputs and outputs, the other depends on the number of patterns.

The formula was proposed as follows:

nH =0.5-(I + M) + J k  (3.5)

where:
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I  - number of inputs

M  - number of outputs

K  -  number of training patterns.

For various purposes the number of neurons in hidden layers may be flexible [7], [8] and 

without loss of accuracy might be changed by up to 10%. In the considered problem of 

rail/wheel contact, one has to emphasize those parameters, which have considerable amount of 

influence on the level of residual stresses in the rail cross-section. For this purpose it is important 

to know especially [9], load magnitude and its location on the railhead, the position of every point 

in rail cross-section, and several of the characteristics uniquely describing the state. In the 

problem depicted above, input values include the load location on the surface, the mesh-point 

coordinates in the cross-section, and the linear values at those points. As an output parameter the 

residual stress a rzz computed in the mesh-points has been used. The network outputs were 

compared with the MFDM values. A file of 16,000 patterns has been generated. Hence BPNN 

structure consists of four inputs, two hidden layers of 61 neurons each, and one neuron in the 

output layer.

The strategy of producing training and testing files from the pattern file is important for 

the BPNN. Therefore the pattern file was divided into two parts: the training file and the testing 

one. Usually the training file contains 80 to 90% of the patterns, while the testing one from 10 to 

20% of them. The training file applied here consisted of approximately 80% and the testing file 

of 20% of the patterns. The training file contained eight complete solutions for different 

locations of wandering load. The testing file included two other solutions of the rail/wheel 

contact problem.

RBF neural network consists of the input layer, one hidden layer and the output layer. 

Hidden layer contains neurons, which have radial basis activation functions (2.6). The output 

layer neurons have linear activation function (2.5). RBF neural networks learning is based on 

finding the distance in a space between the target and the output value. It is possible to train such 

a network in different ways: supervised -  with use of a typical backpropagation algorithm (2.8) 

and unsupervised -  finding the solution of equation (2.20) in regularization process. The second 

method is achievable in two ways: first, when the number of patterns is exactly the same as the 

number of neurons in the hidden layer, second, when the number of neurons is increased one by
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one after every iteration from certain starting point to the minimal number of neurons which 

satisfies the error goal or maximum number of neurons is reached. In this way one may reach the 

so called clustering of the solution. It depends also on the spread of the activation function (2.6). 

In both situations the number of hidden neurons is large. This implies that the RBF neural 

networks are related to local approximations around the centers in the space of input variables 

and often applied to the classification problems.

3.4. Comparison of the results of backpropagation and radial basis function neural 
networks.

Figure 3.2 and 3.3 present the example of the axial residual stress maps computed by MFDM 

and reconstructed by the single residual stress BPNN output.

On the other hand Figure 3.4 presents axial residual stress map for a single contact load,

crI I / + / i n c r . =  1
-1 .6  - 1 . 2  - 0 . 8  -Q .4- 0 .0  0 .4  Q.B 1.2 1.6

6.6

6,4

6.0

5.6

5 .2

Figure 3.3 Axial residual stress map /+/ reconstructed by the single BPNN after 100 
thousand epochs of training [10]. Increment = 1 kpsi

reconstructed by the RBF network for the same loading as original MFDM solution presented in 

Figure 3.2. The RBF type of network is characterized by rather fast learning time in comparison 

to BPNN and larger number of neurons in the hidden lajer (here 12,000).

For the axial residual stress component relevant error norms have been calculated, namely 

the maximum norm:
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= max (3.6)-MAX
j

r  N N
j

and the average (L2) norm:

where:

srki - residual stress -  input data provided by the MFDM solution, 

smki - residual stress -  result of NN analysis, 

q -  number of iteration points.

crzz/+ /fncr.=1
— 1.0  - 1 . 2  - 0 , 8  - 0 . 4  0 .0  0 .4  0 ,8  1 .2 1,8

Figure 3.4 Axial residual stress map /+/ reconstructed by the RBF NN. Increment = 1 
kpsi
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crZI/+ /inc r= 1
- 1 .B  - 1 . 2  -D .B  -0 .4 - 0 .0 0 .4 0.B  1.2 1.6

Figure 3.4 Distribution of the s zz average error for the single residual stress BPNN after 
100 thousand epochs. Increment = 1 kpsi.

a-zz/+/'ir\cr.=2
- 1 . 6  - 1 . 2  - 0 .B  - 0 . 4  a.O 0 .4  O.B 1.2 1.B

Figure 3.5 Distribution of the s zz maximum error for the single residual stress BPNN 
after 100 thousand epochs. Increment = 2 kpsi
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C7zz/ + / i n c r .= 2
- 1 . 6  - 1 . 2  - 0 . 0  - 0 . 4  0 . 0  0 . 4  0 . 0  1 .2  1 .6

6.8

8.4

6.0

5.6

Figure 3.6 Distribution of the s zz average error for the single residual stress RBF NN. 
Increment = 2 kpsi.

Figure 3.7 Distribution of the s zz maximum error for the single residual stress RBF 
NN. Increment = 2 kpsi.
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4 Final remarks

This report presents the progress of the application of neurocomputational mechanics to 

the analysis of residual stresses in railroad rails, preceded by[ll],[12], and outlines the 

background for the future analysis of residual stress states in vehicle wheels as well. It is worth 

mentioning that neural networks are a new investigation tool, which was successfully applied 

here and might be used in the nearest future in the analysis and enhancement of both theoretical 

and experimental data.

The first part of the report describes the background of artificial neural networks. It 

emphasizes not only the feedforward neural network and its backpropagation algorithm of 

learning but also radial basis function neural networks and the regularization theory of their 

learning.

Subsequently the next chapter is dedicated to the formulation of the residual stress task in 

the neural network environment. Results of training and testing using elastic-perfectly plastic 

solutions based on MFD Method were presented. Single component analyses of axial residual 

stress were illustrated. The results were obtained and compared for different neural network 

types. These are followed by the analysis of several types of error.

The study confirmed the usefiillness of this new method in the analysis of residual stresses 

in railroad rails and led us to take the closer look on the RBF neural networks. The future plans 

are aimed at developing the hybrid meshless methods and RBF based neural network with 

constraints based on experimental analysis of the residual stresses, dedicated to railroad rails and 

wheels.

!
I
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Topic 2.4

R e c o n s t r u c t i o n  o f  t h e  f u l l  3 D  r a i l  r e s i d u a l  s t r e s s  b y  p h y s i c a l l y  
b a s e d  g l o b a l  m e t h o d  f i t  to  n e u t r o n  d i f f r a c t i o n  d a ta  a n d  

t r a n s v e r s e / o b l i q u e  s l i c i n g  d a ta  r e d u c t i o n  a l g o r i th m



RECONSTRUCTION OF THE FULL 3D RAIL RESIDUAL STRESS FIELD 
BY THE PHYSICALLY BASED GLOBAL METHOD FIT TO NEUTRON 
DIFFRACTION DATA AND TRANSVERSE/OBLIQUE SLICING DATA

REDUCTION ALGORITHM

The research on the 3D technique in the current research year was split into work 

on mastering the algorithms/numerical techniques applied, analysis of optional 

sectioning scheme(-s) and practical analysis of the currently available ND data 

performed on new, enhanced grids.

In particular, the research program planned for the 2002/2003 research year 

included:

1. further development and mastering the 3D solution procedure;

2. 3D analysis of new rail residual stress data;

3. a study (on simulated data) of a three slice procedures: horizontal and vertical 

O/T/O with a special attention to the case of symmetrical O/T/O;

4. 3D analysis of residual stresses for the case of several independent data 

series for the same rail sample, as it takes place in the case of the Sample 

#3, for which three independent data series are available.

The report contains research material regarding the items 1, 2 (not performed 

substitute material enclosed -  explanation follows in Introduction), 3 and 4 (fully 

covered).

556



Cracow University of Technology 
ul. Warszawska 24, 31-155 Cracow, POLAND

R e c o n s t r u c t i o n  o f  t h e  f u l l  3 D  r a i l  r e s i d u a l  s t r e s s  f i e l d  b y  t h e  p h y s i c a l l y  
b a s e d  g l o b a l  m e t h o d  f i t  t o  n e u t r o n  d i f f r a c t i o n  d a t a  a n d  t r a n s v e r s e /  o b l i q u e

s l i c i n g  d a t a  r e d u c t i o n  a l g o r i t h m .

Jacek Magiera

Report to the

US Department of Transportation, 
Federal Railroad Administration, 

Washington, DC

Cracow, June 2003



CONTENTS

1. INTRODUCTION...........................................................................

2. FURTHER DEVELOPMENT AND MASTERING OF THE 3D

SOLUTION PROCEDURE...........................................................

2.1 Improvements on the 2D level................................................

2.2 A  p o s te r io r i error estimation for assessment of experimental

data credibility.........................................................................

2.3 Generation of improved FE/FDM grids..................................

2.4 Influence of grid density on final results.................................

3. 3D ANALYSIS OF NEW RAIL RESIDUAL STRESS DATA........

4. A STUDY OF A THREE SLICE PROCEDURE...........................

4.1 Introductory remarks...............................................................

4.2 Three slice procedures -  theoretical background..................

4.3 Symmetrical O/T/O procedure................................................

4.4 The “N” setup...........................................................................

4.5 Tests for simulated data for symmetrical O/T/O....................

5. 3D ANALYSIS OF RESIDUAL STRESSES FOR THE

CASE OF SEVERAL INDEPENDENT DATA SERIES................

6. CONCLUSIONS............................................................................

REFERENCES..................................................................................

558



LIST OF FIGURES

Fig. 1 Old and new grids for NIST sample #1......................

Fig. 2 Old and new grids for NIST sample #2......................

Fig. 3 Old and new grids for NIST sample #3.......................

Fig. 4 Old and new grids for NIST sample #4.......................

Fig. 5 Old and new grids for NIST sample #5.......................

Fig. 6 Old and new FEM/FDM grids for sample #1.............................

Fig. 7 Solutions for for old and new grids compared....................

Fig. 8 Solutions for <rw for old and new grids compared....................

Fig. 9 Solutions for a ^  for old and new grids compared....................

Fig. 10 Differences of stresses (absolute values) between the old and

new grids ............................................................................

Fig. 11 Solutions for a „  for old and new grids compared..................

Fig. 12 Solutions for for old and new grids compared..................

Fig. 13 Solutions for cr  ̂ for old and new grids compared..................

Fig. 14 Comparison of 3D residual stress on the old and new

grids....................................................................................

Fig. 15 Comparison of 3D residual stress on the old and new

grids....................................................................................

Fig. 16 Comparison of 3D residual stress on the old and new

grids....................................................................................

Fig. 17 Comparison of 3D residual stress on the old and new

grids....................................................................................

Fig. 18 Sectioning schemes, inclination to the vertical axis................

Fig. 19 A general, three slice procedure............................................

Fig. 20 Evaluating fulfillment of basic assumptions............................

Fig. 21 Data series #1 and #3, NIST ND examinations .....................

: I v_J

559



Fig. 22 (a-b) Reconstructed 3D patterns for errand for

combined data sets.....................................................................

Fig. 22 (c-d) Reconstructed 3D patterns for a ^  and for combined

data sets......................................................................................

560



RECONSTRUCTION OF THE FULL 3D RAIL RESIDUAL STRESS FIELD BY 
THE PHYSICALLY BASED GLOBAL METHOD FIT TO NEUTRON 

DIFFRACTION DATA AND TRANSVERSE/OBLIQUE SLICING DATA
REDUCTION ALGORITHM

Jacek Magiera,
Cracow University o f Technology

Summary

The report presents results of research devoted to reconstruction of the full 3D 

rail residual stress field by the physically based global method fit to neutron 

diffraction data and the transverse/oblique slicing data reduction algorithm. The 

work concentrated on analysis of the neutron diffraction data (rail samples #1-5) 

for improved FE/FDM grids (sample #1 analyzed as an example), certain 

improvements in 2D solution strategy (a posteriori analysis of experimental error), 

3D analysis for the case of several independent data series for a sample, and 

analysis of a three slice procedure. An independent effort was aimed at 

development of a higher order 3D brick finite element family that will replace the 

currently used 8-node linear 3D elements.

1. INTRODUCTION

The research on the 3D technique in the current research year was split into work 

on mastering the algorithms/numerical techniques applied, analysis of optional 

sectioning scheme(-s) and practical analysis of the currently available ND data 

performed on new, enhanced grids and with a posteriori experimental data error 

analysis.

In particular, the research program planned for the 2002/2003 research year 

included:

561



1. further development and mastering of the 3D solution procedure;

2. 3D analysis of new rail residual stress data;

3. a study of a three slice procedure: horizontal and vertical O/T/O with a special 

attention to the case of symmetrical O/T/O;

4. 3D analysis of residual stresses for the case of several independent data 

series for the same rail sample, as it takes place in the case of the Sample 

#3, for which three independent data series are available.

Generally, all the research tasks listed above were addressed even though there 

were certain modifications to the task list required.

As far as the item 1 (further development and mastering of the 3D solution 

procedure) is concerned, the report contains description of improvements 

introduced on the 2D level1, the new family of improved FEM/FDM grids 

generated for rail samples #1-5. Another task performed in this topic was 

analysis of influence the grid density has on results. Part of the work concerning 

item 1 research that focused on development of a new, non-linear 3D brick 

element family for enhanced analysis of elastic behavior of rail slice samples was 

performed by J. Krok, the author of the NAFDEM-PC FEM/FDM code used in the 

TOS-3DRS2 system, and is reported elsewhere in the group report as the paper 

entitled: Increm ental analysis o f residual states by  the elastic-plastic constitutive 
models. New elements families in incremental p lastic ity [1].

The research on the task listed as item 2 (3D analysis of new rail residual stress 

data) was impossible to be carried out due to lack of the new data3. This tasks 

will be performed when the new data is available. To compensate for the lack of

by  th e  2D  leve l It is unde rs tood  he re  th e  g loba l m e th od  p ro ce d u re  fo r  e x p e rim e n ta l da ta  
ana ly s is  a nd  e n h a n ce m e n t
2 an  a c ro n ym  fo r  T ra n sve rse -O b liq u e  S lic ing  - 3D  R es idu a l S tre s s
3 sup po se d  to  b e  a va ila b le  by  the  end o f 2 0 03  yea r
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this material, the author performed new improved 3D analysis of the old neutron 

diffraction (ND) data [9] that made use of the newest advancements on the both 

2D and 3D levels. Exemplary results for ND sample #1 data are presented.

The material regarding item 3 (a study of a three slice procedure) contains 

introduction of the concept of three slice procedure, algorithms and exemplary 

results. Unfortunately, not all tests planned were performed due to numerical 

instabilities observed.

As far as item 4 (3D analysis of residual stresses for the case of several 

independent data series for the same rail sample) is concerned, the report 

contains results for combined analysis of data series #2 and #3 for ND rail 

sample #3.

2. FURTHER DEVELOPMENT AND MASTERING OF THE 3D SOLUTION 

PROCEDURE

Certain enhancements in the 3D rail residual stress reconstruction procedure 

proposed in the last report [4] like different techniques for pre-smoothing of the 

FEM solutions or tests for higher order approximation on the “between slices” 

level provided mixed results: the procedure worked but it was hard to conclude 

that certain variants are definitely better than others. Introduction of those 

modifications undoubtedly cut down the total number of iterations required for 

observing convergence on the assumed error norm level, but the quality of final 

results sometimes suffered from those modifications. The general conclusion was 

that the previously used version of the procedure seemed a sound and 

reasonable choice.

In the current work several different areas of possible improvements were 

considered and explored. They included:

- improvements on the 2D level (data smoothing);
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- a posteriori error estimation for assessment of experimental data credibility

- generation of improved FE/FDM grids

- analysis of influence the grid density has on final results

As mentioned in Introduction, there was also an independent effort aimed at 

development of higher order 3D finite elements that should vastly improve the 

quality of FE rail slice modeling but it is not reported here.

2.1 Im provem ents on the  2D level

The 2D level, even though formally independent from the 3D level analysis and 

treated as separate research topic [2], is in fact an important ingredient of the 

Transverse/Oblique Slicing (T/O-S) approach and as such, it significantly 

contributes to the overall outcome of the 3D rail residual stress analysis. Thus 

work on mastering of the 3D procedure naturally encompasses 2D level 

procedures and benefits from improvements worked out there.

The main improvements on the 2D level worked out recently include:

- work on criteria for automatic selection of reasonable weighting factors 

ascribed to experimental data points (four methods proposed, each as 

iterative or non-iterative)

- a new formulation of the global method that make it possible to find the 

maximum gate width parameter used in the classical GM formulation for 

break-off criterion

A detailed report on these improvements is contained elsewhere in this volume 

as Topic 2.2 [2].
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2.2 A posteriori e rro r estim ation  for a s s e s sm e n t o f experim ental da ta  

credibility

Practical applications of the T/O-S approach to 3D analysis of rail specimens 

would benefit greatly from the knowledge of data credibility that may serve for 

assessment of overall quality of results. Such estimation has been difficult so far 

with the classical, statistically based methods of data credibility assessment as 

the experimental techniques used were destructive and the prohibitive cost level 

prevented examinations of more than one rail sample of a kind [3]. Thus almost 

all that could be done, as in the case of the quoted J.J. Groom examinations [3] 

was to apply certain complementary approaches to provide redundant data for 

such estimations. In case of the recalled examinations it was e.g., applying scribe 

marks on peripheries of the rail slab prior to cutting of the examined section and 

to record the length change observed upon specimen removal. This data was 

then used for general verification of the data obtained from the Yasojima-Machii 

and Meier samples. Such techniques are perhaps suitable for general validation 

of the data but do not provide any quantitative measure of error. Needless to say, 

the outcome of J.J. Groom error assessment was the conclusion that the error 

was on average 10% (i.e., ca. 20-30MPa)4, the newly developed techniques 

show its level as high as even more than 400 MPa at separate experimental 

points.

The methodology for a posteriori evaluation of experimental data error makes 

use of the high quality data fits the global method provides. Thanks to its built-in 

physical relations, the smoothing of the data produces not only visibly attractive 

results but also guarantee fulfillment of those relations and as such, the 

smoothened fields may serve as a reference solutions for evaluation of 

experimental error.

m ax . it w a s  fo u n d  to  be  44%
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Several general error estimator were proposed, out of which two were tested and 

intensively used in analysis:

1. the stress based, component-by-component (SBCC) estimator

2. the relative local curvature (RLC) estimator

Use of both of them and the results they provide for exemplary experimental data 

derived from the J.J. Groom work [3] are shown in the quoted report [2].

2.3 G eneration  o f im proved FE/FDM grids

The problem with the currently used grid generator GRID [11] was that due to its 

internal organization (generation of structured grids in generalized quadrilateral 

sub-domains) it was unable to exactly follow the profile of the boundary line and 

the discrepancies were especially visible in the areas of intensive plastic flow 

where material formed cusp-like projections. This problem has been already 

discussed and to a degree addressed in [10] when new grids were generated for 

samples #1-5 with help of ADINA FE grid generator but it turned out that even 

though the quality of the boundary representation was improved the grids had 

very uneven distributions of nodes and it was difficult to control the total number 

of nodes. Another difficulty with ADINA’s grid generator was that it was 

impossible to generate a family of “hierarchical”, denser and denser, grids which 

would have the feature that a denser grid contains all the nodes of a coarser grid. 

This would be beneficial for validation of results of the planned for research 

problem of the minimum number of nodes required for analysis of neutron 

diffraction data.

The new grids were generated with the GRID generator as it lends itself well for 

generating “hierarchical” grids but a manual correction procedure at the 

peripheral layer of nodes was applied to rectify the boundary problems that 

affected the originally generated grids. This procedure was applied to all five rail
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samples for grids of exactly the same density like the previously used 971 nodes 

(for comparative computations).

Results of this procedure for rail samples #1-5 are shown in Figs. 1 to 5. In each 

figure the original profile (a) (as provided by NIST), the old (b) (i.e., generated 

with GRID generator) and the corrected (c) grids are shown. As mentioned, the 

new grids are topologically equivalent to the old ones, but corrections were 

applied that make the new grids to conform to the original profiles. They are 

visible especially in the tread-parts of the profiles where the material subject to 

plastic flow formed local cusps or sharp points (see e.g., areas denoted as A  and 

A ’ in Fig. 3) or in the areas where the GRID program generated nodes forming 

locally, at the cross-segments boundaries defining its profile approximation 

regions, concave boundary line where it should form either straight line or 

convex curve (see areas denoted B  and B’ in Fig. 5).

2.4 Influence of grid density on final results
One of the essential questions when performing numerical analysis with either 

the finite element method or finite difference method (and the TOS-3DRS system 

makes use of both) is the question about the required grid density and its 

sufficiency for the considered problem. In the area of theoretical computations 

the prevailing approach now is to use one of the range of adaptive methods 

which through a p o s te r io r i error estimates provide a tool for building mesh/grid 

density indicators. With help of this indicators and usually at the expense of 

iterative procedure, a correct (or sufficient) density might be evaluated.

In the case of enhanced numerical analysis of experimental data, which is a 

subject of the research activity reported here, the adaptive approaches are 

almost useless. The main reason is that what has the dominating influence on 

the error now is not like previously the order p of the approximation (or its 

derivatives) spanned, jumps of certain derivatives at the cross-elements 

boundaries j  or element/star’s characteristic dimension h  -  even thought those
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factors are present in the FE/FDM analyses performed -  but the quality of 

experimental data and error committed while it was collected. Thus the 

techniques for evaluation of the required grid density worked out in the field of 

theoretical analysis are not (at least easily) transformable to the field of 

experimental data reduction algorithms. Instead, in all analyses performed by the 

author and reported to the US DOT, FRA over the last several years a heuristic 

approach has been applied that bounds the grid density to the experimental data 

points density, keeping the FEM/FDM grids ca. 1.5-2 times denser than the 

experimental ones. For such a choice all the procedures worked and no 

problems with numerical instabilities were encountered, but the question whether 

it is a sound reasoning has remained open.

To investigate the problem, a new higher density grid was generated for NIST 

sample #1 profile. It is almost twice as dense as the old one, having 1835 nodes 

(vs. 971) and 1720 quadrilateral, 3440 triangular elements. This new grid was 

used in standard 2D NIST data smoothing procedure with use of the global 

method and the results were compared.

In Figs. 7 - 9  results for cr ,̂ cr̂  and a  for the old and new grid are juxtaposed,

in Fig. 10 differences between them are plotted. As it may be seen, the new 

results do not visually differ significantly except for the area close to the 

peripheries of the rail where certain more significant differences manifest their 

presence. Their amplitude is on average equal to ca. 20-60 MPa (which is ca. 5- 

15% of the stress magnitudes at those areas), but such extreme values happen 

only at very localized points (e.g., on the right-hand side of the railhead for the 

vertical stress a ■ , where very steep gradients are recorded). The differences in

the shear stress modeling (Fig. 10c) are a little bit more penetrating into the 

inward part of the railhead but this is not surprising as this stress component was 

numerically restored and is naturally more sensitive to even slight fluctuations in 

numerical procedure parameters. Their magnitude, though, at majority of data 

points remain on a stable level of ca. 5-10 MPa (ca. 6-15%), at certain points
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close to peripheries it reaches the level of ca. 30-40 MPa (ca. 40-50% of 
difference).

Generally, the test with the new twice as dense grid, showed a reasonably good 

agreement with the older grids family, used throughout the analysis of residual 

stress in the examined rail samples. The data reduced in the inner part of the 

railhead on both grids shows a very good to excellent agreement, with 

differences usually not exceeding the level of 10 MPa (which gives ca. 1-8% of 

error, depending on the region), at certain regions in the outer parts, it rises to 

20-60 MPa.

The 3D procedure, which for both simulated experimental data [5,6] and ND 

actual data [7,8] was found to change the stress magnitudes recorded in the 2D 

specimens (rail slices) by a comparable in both cases level of ca. 15-35%, might 

be also expected to incur the grid related errors, estimated on the 2D level as the 

1 %-8% at majority of data points (and up to 40% at extremums) will be projected 

to the 3D space with the same factor of 15-35%, thus the resulting 3D error due 

to grid phenomena might be estimated at the 0.15% to 3% in the inner part of the 

railhead and might approach the amplitude of ca. 15% at separated peripheral 

nodes.
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Fig. 1

Old and new grids for NIST sample #1
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Old and new grids for NIST sample #2
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Old and new grids for NIST sample #3
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Old and new grids for NIST sample #4
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Old and new grids for NIST sample #5
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Old and new FEM/FDM grids for sample #1
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Solutions for for old and new grids compared
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a) b)
Fig. 8

Solutions for for old and new grids compared
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GM Smoothing for ATR =0.9879578 GM Smoothing for ATR =0.998808

578



c m

Acr  ̂Sample #1 
Old and new grids compared
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Old and new grids compared
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Old and new grids compared

Fig. 10

Differences of stresses (absolute values) between the old and new grids
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3. 3D ANALYSIS OF NEW RAIL RESIDUAL STRESS DATA

As mentioned, the research task listed as this item was impossible to be 

performed due to lack of the new data and will be performed, as planned, when 

the new data is available. To compensate for this lack, analysis of the old ND 

data was repeated for all rail samples #1-5 with all the improvements/ 

advancements on both 2D and 3D levels worked out lately (new grids, new 

strategies in GM smoothing, a p o s te r io r i experimental error estimates, etc.). A 

complete description of those results is provided in the final report [4], here 

exemplary results obtained for sample #1 will be shown.

In Fig. 1a original profile of sample #1 as delivered by NIST [9], in Fig. 1b the old 

and in Fig. 1c the new corrected grids are shown. The improvements are visible 

e.g., on the running surface of the rail or vertical parts of the head profile.

In Fig. 11-13 presented are 2D results obtained for the considered rail on the new 

grid (Fig. 11a, 12a, 13a) altogether with reference 2D solutions obtained for the 

old grid (Fig. 11b, 12b, 13b). In Fig. 11c, 12c and 13c contour/surface plots of 

differences in solutions for the new and old grids are shown.

The first impression when examining solutions in Fig. 11-13 might be that there 

are no essential differences between solutions for the new and old grids. 

However, when one sees the plots of differences5 between those two families of 

solutions (Figs. 11c, 12c and 13c) it is clearly visible that the representation of the 

profile of rail sample does affect the solutions -  especially in the peripheral areas 

of the head and that the differences might be at certain points as high as 100 

MPa for a ^  stress component, 240 MPa for stress component and 140 MPa

fo r  a ^  stress component. Shear stress component is different from the other two

in-plane stresses in that it exhibits the biggest fluctuations in the middle of the 

head. This results confirms the aforementioned feature of the shear stress that,

absolute values of to be exact

580



being numerically reconstructed, is subject to the biggest sensitivity to the 

approximation parameters.

The outcome of this test proves the thesis that pretty minor differences in 

representation of the rail profile might lead to significant differences in the 

solutions so having as exact as possible representation of the rail profiles is 

crucial.

Results of analysis for reconstructed 3D solutions are presented in Figs. 14-17. 

Figs. 14a, 15a, 16a and 17a contain stress patterns obtained on the old grid, 

Figs. 14b, 15b, 16b and 17b stress patterns obtained on the new grid. Again, 

there are no bigger differences spotted in the solutions but there are certain 

differences between those two solution families thus the above listed conclusions 

for the 2D levels hold also for 3D level.

581



c :

ctxx Sample #1 Transverse/Old grid 
GM Smoothened for A=0.7036

a xx S a m p le  #1 T ra n s v e rs e /N e w g rid  

G M  S m o o th e n e d  fo r  A =0.8905

S a m p le  #1 T ra n sve rse

D iffe re n c e s  in th e  so lu tio n s  on  n e w  an d  o ld  g rids [M Pa]

180.00-

160.00-

140.00-

4000 6o!oO 80.00 100.00

Fig. 11

Solutions for a„ for old and new grids compared
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Oyy Sample #1 Transverse (NIST100) 
GM reconstructed for AO.7036

<ryy Sample #1 Transverse/New grid 
GM Smoothened for A=0.8905

cTyy Sample #1 Transverse 
Differences in the solutions 
on new and old grids [MPa]
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Fig. 12

Solutions for for old and new grids compared
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cr Sample #1 Transverse/Old grid xy
GM reconstructed for A=0.7036

ct Sample #1 Transverse/New gridxy
GM Smoothened for A=0.8905

<tv Sample #1 Transversexy
Differences in the solutions 
on new and old grids [MPa]

Fig. 13

Solutions for a^ for old and new grids compared
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cr^ Sample #1/Old grid,
3D State Restored by TOS-3DRS [MPa]

a)
Fig. 14

Comparison of 3D residual stress a„
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(7 Sample #1/New grid,
3D State Restored by TOS-3DRS [MPa]

b)

on the old and new grids



cr Sample #1/Old grid,
3D State Restored by TOS-3DRS [MPa]

cTyy Sample #1/New grid,
3D State Restored by TOS-3DRS [MPa]

Fig. 15

Comparison of 3D residual stress on the old and new grids
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cr  ̂Sample #1/0ld grid,
3D State Restored by TOS-3DRS [MPa]

<j Sample #1/New grid,
xy

3D State Restored by TOS-3DRS [MPa]

Fig. 16

Comparison of 3D residual stress on the old and new grids
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azz Sample #1/New grid,
3D State Restored by TOS-3DRS [MPa]

ct̂  Sample #1/Old grid,
3D State Restored by TOS-3DRS [MPa]

Fig. 17

Comparison of 3D residual stress o2Z on the old and new grids

588



4. A STUDY OF THREE SLICE PROCEDURE

4.1 Introductory remarks
The transverse/oblique slicing (T/O-S) method, proposed at the end of the 80’s, 

has been investigated so far as a two-slice procedure, in both possible versions 

of rotation of the oblique slice: firstly around the horizontal axis X  [5,6], secondly 

around the Z axis [12]6. Both setups were proved workable, the iterative 

procedures convergent and stable. Out of those two, the originally examined 

version [5,6] was indicated as better and in fact so far it has been the only one 

that found practical applications.

In this study another possible setups are considered, namely the proposed by 

Orkisz [13] three slice procedures T/O/O and O/T/O (Fig. 18b and 18c) and the 

T/O/T7 setup adopted recently in the Agreement [14] (Fig. 18e).

The advantage a three slice procedure has over a two slice one is that the third 

slice might be used either for performing independent computation (thus provide 

a means for verification of assumptions or validation of the results) or it might be 

processed simultaneously with the two other slices for additional gain in quality of 

results or simplification of certain relations8.

4.2 Three slice procedures -  general formulation
The theoretical background for three slice procedures considered here will be 

now given. As far as the T/O/O and O/T/O setups are considered, the concept 

was worked out in 1990 by Orkisz [13], the T/O/T concept was proposed during

6 of course, directions of the oblique slice around both of those axes simultaneously is also 

possible but was not considered due to complexity of transformation relations and no gain in 

accuracy; the two-slice scheme O/O shown in Fig. 18d was not considered, too

7 also called “N” for resemblance of this setup to the capital N letter

8 in that case it will not be used as a source of redundant information for improvements in 

data reduction results
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the author’s scientific visit to the Volpe Center in summer 2002.

Fig. 18

Sectioning schemes, inclination to the vertical axis

Let us consider now a general three slice T/O/O procedure as schematically 

ishown in Fig. 19. in this setup there are one transverse slice and two oblique 

slices, inclined under the angles a  and f t .

~  i
i
*

i
$
!

..............i.....

^
 

!5\
--------------------------------j-----

Fig. 19

A general, three slice procedure
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In that case -  and assuming the body is not sectioned yet -  the stress states in 

the oblique slices might be expressed as tensor transformation of the stress state 

in the transverse slice as:

1. In the slice inclined by a :

— a  _
G  s s  - G X X

o a st =  G xy cos or+  G a  sin or

<jau = <7̂  cos2 or + gzz sin2 cc-ozy sin2or

<7 a nn =  Gyy  sin2 or+ G zz cos 2 a + < r zy sin2or (1)

a a m =  G xy sin o c + g zx cos or

crant = —  £T„„sin2or-—ersin2or+<r cos2or.2 yy 2 9

2. In the slice inclined by J3\

G P ,s

G P st II COS P + G ^ sin P

G P tt = Ĉ cos2 P  + G zz sin2 P ~ G zy sin2P

G P nn

II , sin2 f i  + G zz cos2 P + Gv w a 2 p

G Pm

b̂II sin P + G zx COS P

G P nt
1= — o ' y y S i n i p -

1 .—G ^  sin 2/) + G zy cos

(2)

Then, the perpendicular to the transverse slice face stress components <rzz, a xz 

and might be expressed as [13]:
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cosarcos 0  cr“« sin 2/? -  <jptt sin 2 a: 
sinasin0 2sinasm 0sin(a- 0)

(3)

sin(ar+/?) o att sin2 0  -  <jptt sin2 a  

2 sin a  sin 0  2 sin asin 0  sin(a -  /?)

The advantage of the three slice procedure is visible in relations (1), (2) and (3) 

by:

1. additional information about validity of assumption that the stress state is 

independent of the axial coordinate Z thanks to the fact that

=  o ass =  a Pss for each point of the rail cross-section;

2. additional information for verification of the quality of experimental 

technique thanks to relation for a xl in 2nd of the Eqs. (3)

3. a direct relation for the stress component (if required); in the T/O setup 

it had to be determined from a boundary value problem:

A particularly interesting cases of the three slice procedure are symmetrical 

O/T/O (as in Fig. 18c), where «  = -/? and the “N” { 0  =  0 ,  T/O/T in Fig. 18e) 

setups. The symmetrical O/T/O and the “N” cases are analyzed in the next two 

sections.

4.3 Symmetrical O/T/O procedure
The case when a  =  - 0  is interesting by the fact that for this setup and the 

symmetric/anti-symmetric behavior of the sine and cosine functions, additional

advantages might be achieved. Let us denote cr+y =-^(cr“y+cr_“y),

A<7̂  = 0 in V, (7yz —  = axz on dV (4)
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g  ij = - I ( c r “ y - < j  aij). Then the following relations hold for transformation of the 

stress state from the transverse slice to the g + and o  tensors:

a+ss =  g ^  , g +st =  g ^  cos a , G +u =  G yy cos2 a + G zz sin2 a ,

G +n» = G ^  sin2 a+ G zz cos2 a , G +ns = G zx cos a, G +„, = G zy cos2 a  (5)

g  ss =  0 ,  g  st = G zx s m a ,  g  u =  - G zysin2a,

G ~ n n = G zvs m 2 a , G ~ ns = G xvs in c c ,  g ~m  = — g v vsin2 a ~ — g z sin2 a  (6)zy ay ^  2

In that case, the relations for the stresses totally lost during sectioning might be 

expressed as:

cos2 a  G + tt 
*Tz — ~<3'yy „:_2 „  „:_2

G rz — G  st ■

sin a  sin a  

1

- G  tt-

sma 

1
sin 2 a

( 7 )

Relations (5)-(7), thanks to the tensor transformation rule, are simplified now and 

the influence of the shear stresses might be controlled (it is strengthened in the 

case of subtraction and weakened in the case of addition of the stresses from the 

counterpart oblique slices. There is, too, an additional equation for controlling the 

quality of either the approximation or the experiment itself:

g w = g +ss (as previously in the T/O procedure)

G+st = g^  cos a  (additional relation) (8)
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4.4 The “N” setup
The advantage of the “N” type setup, where there are two transverse slices and 

on oblique (Fig. 18e), is that this setup lends itself well to performing the vital 

check of fulfillment of the basic assumption about independence of the stress 

state of the longitudinal coordinate Z, and, in case such dependence is 

confirmed, to introduce corrections.

Evaluating fulfillment of basic assumptions

The validation procedure might resort to the fact that due to the features of the 

transformation rule that nominally (if the Z-axis independence assumption holds) 

guaranties that horizontal stress is exactly the same in all three slices. If not, 

there are now three different but corresponding to each other points: A, A’, A” 

(Fig. 20) thus for each such triplets of points, a second order approximation of the 

stress variation might be assumed:

<Ty(x,y,z) =  az2 +bz +  ay(x,y,0) (9)

where the parameters a and b are found from the interpolation conditions:
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(10)<Txx(x >y>z ') =  a(z')2+b(z') + erg( x , y ,  0) = o ass 

e r „ ( x , y , z H) =  a (z" f + b(z") +  o i j ( x , y f i )  =  < r „ (x ,y ,z ”)

In such a way, by repetition of the procedure at locations of all data points, a 

spatial distribution of the a =  a ( x ,y ) and b =  b ( x , y ) parameters might be 

determined and this might be used for enhanced analysis of experimental data, 

where with help of FEM (or equivalent) approach corrections to the data might be 

computed* 9.

4.5 Tests for simulated data for symmetrical O/T/O

It was planned in the proposal to test the approach on the simulated experimental 

data obtained from the hybrid finite element method program by M. Hotowiriski 

[15]. This program is dedicated to computing 3D residual stress states in railroad 

rails based on shake-down type analysis and the minimum complementary 

energy principle and its results were extensively used in simulation tests 

performed, either for the original T/O formulation [5,6] or its X - T  plane version 

[12]. Thus it seemed to be natural choice to propose to test the three slice 

procedure(-s) also for this pseudo-data. But, unfortunately, due to internal 

restrictions of this program10 and the fact that it arbitrarily limits the stress tensor 

to the and a zz components, the aforementioned tests were not

possible. The source of this problem lies in the fact that if the a xz and <ryz

stresses are identically equal to zero in the whole domain, then the tensor 

transformation rule gives:

<7a ss - (7 ~ a ss =

o ast - o~ast = cr cos orxy

it is also conceivable to employ least square approach and obtain global values of

parameters a  and b

10 so called 10y# linear approximation for the stresses spanned
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(11)

a a u  = o  a u  -  <7yy cos2 «r+ Gzz sin2 a  

oam = o~ann = ow sin2 oc + Ga cos2 a

G ans = - G ~ ans = Gxy sin or

Gant =-G~ant =-^Gyysm 2a-^ g„  sin 2 a

due to anti-symmetric behavior of the sin(x) function and symmetric behavior of 

the cos(x) function. As it may be seen, out of the six stress components only a ns

and Gnt are different (anti-symmetric, in fact) in the two corresponding oblique 

slices, the rest is exactly the same. Therefore, the

G +ij =  G ±aij , G~ij = 0 (12)

for all components except for a m and o nt, but those two component are

neglected11 to simplify the FEM modeling of rail samples. But this renders the 

three slice procedure equal to the classic two slice T/O procedure thus no 

benefits of three slice procedure might be seen in the results.

The tests for the three slice procedure will have to wait then for the new ND data 

where this concept is explored12.

5. 3D ANALYSIS OF RESIDUAL STRESSES FOR THE CASE OF SEVERAL 

INDEPENDENT DATA SERIES

The analysis of 3D residual stress reported here was performed for the case 

when for a sample several independent data series were available. Happily, the 

neutron diffraction technique on the 2D level is non-destructive thus it was

11 it was proved [5, 6] that this might be done with error amplitude of ca. 0.5%

12 as is the “N” setup
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possible to perform repeated scans of a sample (sample #3 data of [9]) and 

collect several data series. In the case of this particular sample there were three 

data series collected, one for a coarse 5x5 mm grid, the second for a fine 3x3 

mm grid, and the third one for the coarse but spatially extended grid. In fact, the 

first and third data series are the same for majority of data points except for four 

rows13 of data points beneath the limit for all other data series/samples line of 

y=147.7 mm (in Fig. 21 the gray squares mark data series #1, the white ones 

beneath them -  data series #3).
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0
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X
Fig. 21

Data series #1 and #3, NIST ND examinations (figure source [9])

The main aim of this analysis was to test whether a simultaneous processing of 

independent data sets will provide better results while not affecting convergence 

and stability of solutions.
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and several other in the web and foot of the rail
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In the report [2] enclosed in this volume, the details of 2D analysis were 

discussed and the results obtained were shown. The outcome of the tests on the 

2D level was that the 2D procedure was convergent and stable and that -  due to 

apparently not equal numbers of the qualified data points in those two sets (275 

vs. 105) -  the final patterns bore a strong resemblance to the fine grid data 

smoothing results.

On the 3D level the procedure was also proved to be stable and convergent 

though -  alike to the 2D level -  the solutions are more noisy and showing small 

fluctuations in their stress patterns (Fig. 22a-d). Not surprising, the conclusion 

about similarity of the result to the fine data patterns is also confirmed on the 3D 

level.

A general conclusion of this test is that combined processing of independent data 

sets gave mixed results. From numerical point of view, it is more demanding as it 

e.g., requires finding proper weights between the data sets. However, despite 

those cons, it might be a valuable addition to the physically based approximation 

technique.

6. CONCLUSIONS

In the report presented were results of the newest research dedicated to 3D 

procedure. They regarded such issues like:

- improvements in algorithms (three slice procedure)

- improvements in data preparation (new FE/FDM grids)

- improvements in overall data reliability (a p o s te r io r i error estimates)

- study of influence of the distribution of nodes and/or boundary 

representation on the final results

- study of grid density influence on the final result
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1c.: C D

a) a Sample #3, Reconstructed 3D State b) <r Sample #3, Reconstructed 3D State
x x  y y

Combined data series #2 and #3 Combined data series #2 and #3

Fig. 22 (a-b)

Reconstructed 3D patterns for a a  and a yy for combined data sets
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c) cr  ̂Sample #3, Reconstructed 3D State 
Combined data series #2 and #3

d) <r Sample #3, Reconstructed 3D State 
Combined data series #2 and #3

Fig. 22 (c-d)

Reconstructed 3D patterns for o xy and o zz for combined data sets
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practical analysis of ND data

The outcome of these tests/studies is that:

- the quality of the final results strongly depends on the quality of grids and 

their strict conformance to the true profiles of rail samples

- it also depends on the grid density and the possible errors manifest 

themselves at the sample’s peripheries; the magnitude of this error is not 

high and it is further reduced on the 3D level

- the tests for the three slice procedures for currently available simulated 

data hardly could be done; they require either a new theoretical approach 

(incremental analysis) or actual experimental data for tests

- simultaneous processing of independent data sets is possible and the 

iterative procedure convergent though the results might be a little bit more 

noisy than in the case of a separated processing of the data.
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T o p i c  2 . 5

E r r o r  c o n t r o l  i n  a p p r o x i m a t i o n ,  s m o o t h i n g  a n d  e v a l u a t i o n  o f  

p h y s i c a l  d a t a  m e a s u r e d  a n d  c a l c u l a t e d  f o r  r a i l r o a d  r a i l s  a n d

v e h ic l e  w h e e l s



E r r o r  c o n tr o l  in  a p p ro x im a tio n , sm o o th in g  a n d  e v a lu a tio n  o f  p h y s ic a l  
d a ta  m e a s u r e d  a n d  c a lc u la te d  f o r  ra ilro a d  ra ils  a n d  v e h ic le  w h e e ls .

The report, entitled:
A n  e x te n d e d  a d a p t iv e  p ro c e d u re  o f  e x p e r im e n ta l d a ta  c o lle c tio n  a n d  e v a lu a tio n  
b y  a ’ p o s te r io r ir  e r r o r  e s tim a tio n . R e v is e d  v e rs io n . 

deals with the problem under consideration, and pertains to all the topics (2.5.1 -  2.5.7). 
The work addresses extended and revised formulation of a new approach proposed to 
measurements planning and carrying out by means of error control of experimental data. 
It includes: development of postprocessing techniques for approximation of data given in 
a discrete form, a'posteriori error estimation (evaluation) of measured data, estimation of 
a new required experimental points location and density, definition of reliability index of 
experimental data. Theoretical consideration and numerical analysis are based on the 
Adaptive Finite element Analysis (AFEM) and the Meshless Finite Difference (MFDM) 
approach. Differences in numerical and experimental data analysis are underlying.
See also report entitled:

2 D  In c r e m e n ta l  a n a ly s is  o f  re s id u a l s tre s s e s  in  ra ilro a d  ra ils  w ith  p la s t ic  h a r d e n 
in g  ta k e n  in to  a c c o u n t. 

in topic 1.3.
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1. Introduction

This work addresses validation of an approach proposed to control error in 
smoothing/ approximation of experimental/numerical data. On the base of aposteriori 
error analysis of data, adaptive procedure of experimental data collection and 
evaluation is presented.

One often has to transfer discrete data known at certain points to other points, for 
instance one may need e.g. a much clearer picture or require data smoothing. 
Sometimes one may also need additional data. How can this be done at the minimal 
loss of accuracy? Is it possible to measure the degree of information loss and if so, 
how? Is it possible to recover, as a by-product, additional information on the data 
(regularity, smoothness) and locations of data points (guaranteing the highest 
accuracy, when distributions of data points density and function gradients are 
similar). Positive answers to above-mentioned questions are crucial in proper 
interpretation of experimental/numerical data.

The present research is concentrated on further development of an approximation 
technique of physical/numerical data, based on the MWLS (Moving Weighted Least 
Squares) [7, 8 , 9, 11] and finite difference formulae (FDM) and formulation of a new 
approach to experimental data measurements planning and carrying out. It includes:

• introducing and validation of postprocessing techniques for data approximation 
done in a discrete form,

• validation of an iterative approach to additional enhancement of data at new 
locations,

• formulation of aposterio ri error technique to trace the loss of accuracy of 
original data by using different "error norms", ap o sterio ri error estimation,

• evaluation of experimental points density in experimental data taking into 
account equal error distribution,

• formulation of the new adap tive  approach  to e x p e rim e n t p lan n in g  a n d  carry ing  
out, taking into account aposteriori error estimation and distribution of 
experimental points with equidistributed error,

• analysis of the wheel saw cut data, especially for the wheel #2 (see [[3] ,11,8 ]), 
as a sample application of the proposed approach

Part of the theoretical considerations is based on the Adaptive Finite Element 
Analysis (AFEM). AFEM gives tools to solve the problem under consideration, even 
though the problem does not necessarily conform to the AFEM case, because 
several assumptions are violated (for example one does not know the rate of 
convergence and degree of smoothness, i.e. regularity of the physical data).

The theory of aposteriori error estimation in discrete methods like in the FEM or 
MFDM is already well established. As a result one obtains new mesh density to solve 
boundary value problems with highest possible accuracy i.e. with equidistributed 
errors. Now the same idea is proposed for experimental mechanics. Theory 
presented here allows to evaluate results obtained in experiment and to give very 
precise information on location and density of gauges or on size of moire 
interferometry grid (output of any experimental method may be evaluated). If it is not 
possible to improve measurement quality, one gets precise information on data 
measured with insufficient precision. Reliability indices defined in presented work
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yield tools to assign very objective weights to measurements differing in quality. 
A’posteriori error estimation in FEM, which may be (however indirectly) used to 
introduce proposed idea, is presented here to explain our intent.

2. A posteriori error estimation of discrete data
2.1 Zienkiewicz-Zhu aposteriori error estimator -  approach #1

For the ap o s terio ri error estimators used in FEM and MFDM, based on the 
postprocessing of the stresses (or fluxes) - see Zienkiewicz, Zhu -ZZ [14-17] - one 
has

\e\ =  [ \ { c - o h) TD - \ o - o h) d a f  (2 .1 )
a

where o h are stresses obtained by the FEM, D is elasticity matrix.
The exact stresses o  are approximated by new stresses obtained using the stress 

recovery procedure (the Meshless Finite Difference Method - MFDM - is used here 
[9,15])

o" = N o  (2.2)
where o  are nodal values obtained by the MFDM recovery procedure, and N  is a 
shape functions matrix. The exact strain energy and an error of the energy norm 
are expressed as

IMI = [Ji o h)TD - \ o h) d S l f  + \ \ e f , \\e\\ = [J(<7* - o h)TD ~ \o '  - o h)dQ .f (2.3)
n Q

Both ||e|| and j u j  norms may be evaluated as a sum of their respective element
contributions so that (n denotes the total number of elements in the mesh)

1=1 /=1
(2.4)

Remark: An ap o s te rio ri error procedure can be split into two main stages:
• stage 1: calculation of stresses (or other primary values) at Gaussian points - the 

primary set of points,
• stage 2: approximation of the Gaussian-located stresses at nodal positions 

(secondary set of points), retrieval of the nodal values to Gauss points using (for 
example) standard shape functions or other kind of approximation.

Flaving two sets of values of different accuracy at the same points, one may 
calculate local ||e|, ||£/|, and global ||e||, \\u\\ norms.

2.2 Approximation and error analysis of physical (experimental) or numerical 
data -  approach #2
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New idea of a’posteriori error estimation of randomly distributed experimental data 
or numerical data coming from FEM or MFDM analysis is presented here.

Let us define the following problem:
• data, (not necessary stresses like in eq. (2.3)) coming from experiment, located 

at certain points - set # 1 (see experimental points-set of primary points, fig 2 .1 ) 
is given,

• the fictitious sets of points used later in calculation - set # 2  (see fictitious points -  
set of secondary points - fig.2 .1 ) is given.

o.oc*
0.00 2.00 4.00 6 .00 8 .00

s q u a r e s  - p r i m a r y  n o d e s ,  d i a m o d s  - 
s e c o n d a r y  n o d e s

Figure 2.1. Primary and secondary mesh for approximation of physical or numerical
data

The problem lies in data translation (approximation) from #1 points set to #2 points 
set. The problem is exactly the same as in error estimator (2.3), but now one has two 
different sets of points with, in fact, arbitrary (not elemental) locations and one has no 
information on regularity, smoothness and reliability of the data.

Differences between two surfaces defined by data #1 and #2 may be measured as

H| = [J V - u h)T{u - u h) + (Vu - V u hf ( V u  - V u h) + (KU'-Kuh)T( K u '- m h)d&Y (2.6)
a

where uh is the vector of experimental data (in experimental points) and u is the 
vector of fictitious sought data. Sometimes weighting factors may be used to 
equilibrate dimensions of terms. In the above formula one can omit (sometimes not) 
the gradients and curvature terms ( k  - see generalized curvature [[5] ,[6 ] ]). One can 
also use discrete form of this formula, summing up differences between values at 
experimental points.

To solve this problem, data from experimental points is approximated to fictitious 
ones (using FDM approximation - see next part of this work) and later on, taking 
values at fictitious points as original data, approximated back from fictitious points to 
experimental ones. In this two-stage approximation part of data is lost, but if 
differences between original data in the experimental points and fictitious data in the 
same points are small enough, one may expect that the approximation in first step 
does not introduce too large error. As it will be seen from numerical analysis this 
assumption holds true.
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Additionally, in the zones where the gradients of approximated function are larger, 
the error magnitude is considerably higher as compared to the zones with smaller 
data gradients. Moreover, if irregularity in data is large the error increases. Those 
facts may be used, as by-product important information, to evaluate experimental 
data. Having a vector of differences between experimental and fictitious values at 
experimental points one can "smear" the error, approximating vector of differences 
from experimental to fictitious points. Adding correction to initial fictitious values one 
can obtain new enhanced fictitious values. This process can be repeated (iteration 
process gives possibility to avoid fluctuation, especially when data is very smooth, 
like MFDM solution). In this way, the very well known approach elaborated mainly in 
AFEM is unified, extended and generalized.

The total norm of the measured values may be expressed as (the discrete form of 
the below norms may be used):

Pf = [J (uh)Tuh + {Vuh)TVuh + (Kuh)TKu‘VQ] + | e f . (2.7)
a

The key question is, whether one can evaluate experimental data using norms 
(2.6) and (2.7)? The answer is yes, if data is regular enough.

As one can see from equation (2.7), not only values of a function measured, but 
gradients of the function and curvatures (needed when material discontinuities are 
present) are taken into account as well. One can find any required derivatives of the 
discrete data, with error control as a by-product.

I

3. Meshless finite difference approximation

The approximation uh(x) of function u(x) is posed as polynomial of order m with 
non-constant coefficients a0(x),a1(x),...,am(x). The order of polynomial is defined as 
the order of the basis. Fora linear basis in two dimensions uh(x) can be written as

uh(x) = + axx  + a2y , (3.1)

where unknown parameters a7 (x) vary with x. The local approximation (for x = x ) 
is given by [ [ 1 ] , [9] ,[10] ,[13]]

m

U (x,x) = (x)o; (x) = pr (x)a(x) (3.2)
j= 0

where p(x) is a complete polynomial of order m

pT(x) =  [l ,x ,y ,x 2,x y ,y 2,...,] (3 .3)
and a(x) is given by

ar(x) = [flo(x),fli(x),...,a .(x)]. (3.4)

The unknown parameters a,.(x) at any given point are determined by minimizing 
the difference between the local approximation at that point and the nodal 
parameters u, i.e. weighted, discrete L2 norm
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(3-5)
r~i

i

I i

!

I I 
• _J

■/(a) = Xw(x -  x,)[uh(x,,x) - Ujf  = Xw(x -  x ,)[p T(x;)a(x) - u, f  ,7=1 7=1
where w (x-x7) is a shift of a given weighting function w(x), and n  is the number 
of nodes in the neighborhood of x for which the weighting function w (x-x7) & 0 .

The minimum of J  in (3.5) with respect to a(x) leads to the set of linear equations
A(x)a(x) = B(x)u. (3.6)

After solving the set of equations (3.6), one obtains
a(x) = A-1 (x)B(x)u = X  A _ 1 (x)B/ (x)wz = Q(x)u, (3.7)

/=i
where

A(x) = iw (x -x ,)p (x J)pr(x; ) , (3.8)
7=1

B(x) = [w(x-x,)p(x1), w(x-x2)p(x2),...,w(x-x„)p(xj] (3.9)

Substituting (3.7) into (3.2), the MWLS approximants can be defined as

uh = pr(x)A-1(x)B(x)u = = Y ,N ,(x)u, =Nu . (3 -10)
7=1 j -0 7=1

rt ^
where the shape functions in MWLS approximation are (note that £ JV, = 1 ).

N , ( x )  = ^  P j  (x)[ A '1 (x)B(x)] j ,  = p rA 1B/ = (3.11)
J=0 M

To determine the derivatives of the approximating function uh( x ) ,  one has to 
obtain the shape functions’ derivatives. The derivatives of the shape functions are 
determined by

N I>X =  [ p ^ - 'B .k  = pr .*A B, + p rA_1,JCB/ + p rA-‘B/;c, (3.12)
where

B /(x )=
3w (x-x7)

3jc
P(X/) (3.13)

Matrix A" is computed by

where
A ^ - A - 'A .A - 1,

A ^ ± ^ = ^ -  p(*,)p'(x,).
7=1 dx

(3.14)

(3.15)

To compute the shape functions and their derivatives, the A matrix has to be 
inverted. This process is more computationally efficient if LU decomposition of the 
matrix A is performed. The shape functions in (3.11) can be written as
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(3.16)= £ ^ . ( X)A-1(x)By/(X) = p rA-1B/ = g rB7 ,
j =o

where the following relationship was used [1 ]

A(x)g(x) = p(x). (3.17)

The vector g(x) can be determined the same way as the vector a . The derivatives 
of vector g(x) can be computed similarly, this leads to a computationally efficient
procedure to determine derivatives of uh. Taking spatial derivatives of (3.17), one 
has

A(x)g(x) ,  = p(x)>x -  A ^g . (3.18)

Thus, the derivative of g(x) can be calculated using the same LU decomposition 
obtained from (3.17). Spatial derivatives of shape function may be obtained as [[1] ]

N I ( x ) tX= g ( x ) iXB I + g ( x ) B h x . (3.19)

By consecutive derivation of equation (3.17) one obtains the set of following 
equations for vector g and its derivatives

A(x)g(x) = p(x),
A(x)g(x) * = p(x)^ -  A jg ,
A(x)g(x) ̂  =p(x)J, - A J,g,

A(x)g(x) „  = p(x)>xr -  A ^g  -  2 A  xg  x, (3.20)

A(x)g(x)iV = p(x)^  -  A ^g  -  A iXg,, -  A  y g  x,
A(x)g(x)iW, = p(x)iW, -  A ^ g  -  2 A y g y .

This leads to a simple relationship for the derivatives of the shape functions

N ,  =  g(x)B/ ,

N ItX = g (x );tB/ +g(x)B/;c,

=g(x)J,B/ +g(x)B/^,

N I<XX =g(x),«B / +2g(x)xB/;c + g(x)B/x t, (3.21)

N I<xy =  g(x)iVB/ +g(x)iXB/J, +g(x)J,B/>x +g(x)B/iV,

=  g(x)JJ,B/ + 2g(x)>yB/>;, + g(x)B/jy .

In practical calculations, the local coordinate system h =  h(h,k) is used
h = h(6,£) = x - x 0, x0 = (x 0,^ 0), (3.22)

where x0 = x0(jc0,j 0) is the point in which approximation is sought. The base vector 
is taken as

p T =[\,h,k,U2 ,h k ,h 2,...,], (3.23)
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so coefficients a0,a l ,...,am may be immediately interpreted as derivatives at point x0 
(usualy called local derivatives)

a, =
du0 _  duQ (3.24)
dx 1 dy

and the matrix Q (see 3.7 ) now is a generalized FD matrix. Combination of rows of 
this matrix and a vector of nodal values yields immediately values of function and it’s 
derivatives at point x0 (but these derivatives may be not continuos from point to 
point).

Consistent MFDM matrix Q and the approximation rule now have the form

D m =

M

u

W„
r ̂ N2 ... N n

aiv, dN2 dNn
dx dx dx

d2N, d2N2 d %
[ d y 2 dy2 ' ’ dy2

= Qu (3.25)

The explicit form of the matrix Q has the following form (note that matrix Q, 
contains columns of the approximation matrix Q of zero-th order)

Q =

prQi PrQ„
P,xQi+PrQi,* p ;Q .+ P rQ „
p^Qi +PrQ1,J> pSQ„+prQ„,

p îQi + 2pfrQi.x +PrQut P,LQ„ + 2P^Q„,x +PrQ„,xr
P'xyQl +P:,Ql,„ + pSQi,* +PrQl,x. -  p,rvQ„ + p ,*Q„,,+p SQ„,* + p 7’Qw

PjyQl "l'2P,yQl,̂  "̂ P Qljy p ^ Q ,+ 2pSQ.o-+PrQ»o,.

Taking into accout that approximation

(3.26)

s sought in the origin of local coordinate
system one has p T(0 )  =  [1,0 ,0 ,0 ,0 ,0 ,- ,] . and thus (note: Qu is the first element in each
i-th column Q,.of FD matrix)

# ,= P rQ ,= 0 i,. (3-27)

As one may see from equation (3.27) global shape functions are equal to first ro w  
e le m e n ts  o f  F D  m atrix .

This means that global approximation is exactly the same as local one in origin of 
local coordinate system. Result is rather obvious, but this means, that meshless 
shape functions and local (diffuse) derivatives in modern notation were first 
introduced in [7] twenty years ago (in polish), and published in [10] (in english). This 
fact was recently confirmed by O.C.Zienkiewicz in his book [16].

613



Relation (3.25) is valid for a very wide class of messhless approaches and yields 
continuous derivatives up to the second order very easily. Having two different 
approximation matrices: Q- obtained from the MWLS approximation (see equation
(3.7)) and Q - (3.25) -  obtained by means of the direct differentiation of wA(x), one 
has another, very useful, capability to measure error as a violation of continuity in 
approximation of the first and second derivatives. This way one may have at the 
same time two different approximation matrices.

Continuity feature of derivatives is not always beneficial, especially when 
approximation of data given in a set of arbitrarily spaced points is needed. Besides 
that, there are problems with proper definition of a weighting function on arbitrarily 
spaced grid of points, because results of approximation, especially derivative values 
strongly depend on type of weighting functions used (dimensions of weight support). 
If support of the weighting function is not properly correlated with grid density and its 
form is not appropriate for the purpose required, results may be considerably worse 
than in the case of direct MWLS MFDM approximation. If support of approximant is 
too large, approximation is too smooth and thus local peak values of approximated 
function are anihilated.

Weighting function used here is [5] ,[6 ]

w(p) = (p 2 +  g4 K g 2 +  P 2) Y P+1) . (3.26)

where p is the distance between central point and the node, p  denotes polynomial 
order and g  is an optimality parameter making singular weighting function 
(interpolation) or non-singular weights (approximation) available. If the optimality 
parameter g  tends to a small value, the weighting function enforces interpolation. If 
optimality parameter tends to large number, approximation takes place, but data 
smoothing may be over emphasized.

It is worth to mention that the continuity problem arises in the MWLS 
approximation. Continuity requires that either all nodes in considered domain are 
taken into account each time or weighting functions defined on an appropriate finite 
supports are used providing zero end conditions. If such support is not properly 
corelated with the mesh density, approximation results may be of considerably lower 
quality than they could be. On the other hand continuity feature of MWLS 
approximation and its derivatives may be not needed in practice (see [1 2 , 13]).

Test problem [12]

Though the matter requires a deeper and systematic study (see [12]) a valuable 
insight into the MWLS approximation quality was gained by analysis of a simple test.

Considered was a set of data presenting the values of function u =  V 25 -  x 2 
defined at nodes of an evenly spaced mesh: 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 having the 
increment 0.5.
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The local (3.24) and global (3.10) MWLS approximation was performed for the 
function itself and for its first local (3.24) and global (3.12) derivatives. Results of 
error analysis obtained in the interval [0.5, 3.0] for various weighting functions are 
presented and compared in Fig. 3.1 a and b. The following may be noticed then:
•  results of the local (3rd order) and global (consistent) approximation are, of 

course, the same for the function itself when using the same weighting functions.

•  neither method did show clear advantages with respect to result quality when 
comparing the first derivative found by means of either the local (3.24) or the 
global (consistent) (3.12) differentiation approach. For local derivatives 
superconvergence property at internal nodes is noted (error of the local 
derivatives is considerably lower than error of the consistent derivatives). 
Superconvergence property of local derivatives for lower approximation order is 
much stronger, than for higher order (not presented here) . On the other hand 
approximation error of the consistent derivatives is more uniform. Maximum error 
is lower than approximation error of the local derivatives. It is interesting to see, 
that the gap between local and global derivatives is proportional to the 
approximation error. This fact explains why error estimator proposed by Gavette, 
Cuesta and Ruiz works very well [18]. Probably, for the first time, it is possible to 
define very convenient error estimator in meshless methods, based on 
postprocessing, but for the two different types of derivatives.

•  squared weighting functions proved clear advantage (minimal errors) over non- 
squared ones,

•  the smallest errors in the function approximation were observed when the singular 
weighting factor (3.26) was used , while squared non-singular 3rd order spline 
weight [1 ], was found the best for derivative evaluation.

From above test it is evident, that the two problems arise: 1° discrete data 
approximation problem, 2° boundary-value solution problem. It is not justified to 
extend conclusion from data approximation to solution of boundary value problem. 
Even if approximation works well in data approximation, one may not obtain good 
results when boundary-value problem solution is needed. On the other hand bad 
results of data approximation not neccessarily mean that approximation will give bad 
results during solution of boundary-value problem.
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o

a —  
♦ —

local d iffe ren tia ting , s ingu la r w eight - squared 

local d iffe ren tia ting , non singu lar w e igh t - squared 

local d iffe ren tia tion , 3 rd  o rder spline w eigh t - squared 

cons is ten t d iffe ren tia tion , th ird  order sp line  w eight - non-squared 

local d iffe ren tia tion , 3 rd  order sp line weight, non-squared

Fig.3.1a, W eight function influence on results o f approximation - function error 

data sought at points: min=0.5, max=3.0, increment A x  =  0 .1
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local differentiating, singular weight - squared
------ ©------- local differentiating, non singular weight - squared
------ • ------  local differentiation, 3rd order spline weight - squared
------ B------  consistent differentiation, 3rd order spline weight, non-squared
-------♦------- local differentiation, 3rd order spline weight, non-squared

Fig.3.1 b, W eight function influence on results o f approximation - derivative error

4. Definition of points density function in experimental and numerical discrete 
data

4 .1  A c c e p ta b le  s o lu t io n  a n d  m e s h  (g r id ) re f in e m e n ts  fu n c tio n

In an adaptive solution approach, the a p o s t e r i o r i  errors are used to modify mesh 
appropriately mesh modifications by means o f so-called error indicators and mesh 
refinement parameters. An approach to mesh modification applied to the adaptive 
FEM (or validation o f a density o f experimental points) is discussed below. This 
problem is very im portant because one has to have the capability to take into 
account, in numerical as well as in physical experiments, relation between gradients 
o f the measured function and density (location) o f the points at which information is 
available.

Solution is ’correct' if the two following conditions are satisfied:
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(i) The global error in energy norm is less than a specified percentile value of the 
total strain energy

IH M M I <4-i)
where 77 is the 'USER' specified value of a permissible relative global error.

(ii) Distribution of elements in a new mesh satisfies a local mesh optimality
criterion

(4.2)Well = e \all(0
where ||e||. is the actual error norm in i-th element and ||e| 
'required ' error norm in the element.

atm is the

The global and local error parameters may be defined from equations (4.1) and 
(4.2) as

_ Ikll -  Hell
*g ~ “ (4.3)

4 U\\ ’ rum
The mesh refinement parameter for the i-th element is introduced as a 

combination of the global and local parameters [[2 ] ]

£ =  £> —  (4 .4 )
g '  n l l r r l l l U l  '  V ’

nallii)

One of the most important questions is: how one can define the required error 
norm for each element. The following definitions are considered here:

(i)the global error, equally distributed all over elements in the mesh ([15])

(4.5)

where n is the total number of elements in a mesh.
(ii) mesh is optimal if squared error per unit element volume is the same over the 

whole mesh i.e. (Bugeda, Onate [[2] ]), taking also into account equation (4.2) 
one has

(Q,.)2 (Q y
and

1
(4.6)

Using eqs (4.5) and (4.6) one may obtain the following e le m e n t re fin em en t 
p a ra m e te rs

&=■ &=•
m l

4 u\\(n)~2 4 U\\ 
for equal error distribution [15] and for the equal specific error distribution [[2 ] ].

vQ‘ ,
(4.7)

However, one should notice that the element and global error norms have different 
orders of convergence
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114 -  o (hnn~ 2 = 0 (C 2), 14 “ o ( h m) (4.8)
where ht and h are the i-th element size and average size of all the elements in 
the mesh, m is the element order and d  is the problem dimension. Dividing the 
element error by its area one obtains

||4 W -O ft") (4.9)

and new element size parameter may be defined as (this is valid only for FEM)

^  =  U gY  =(£■)"■ (4.10)

Refinement of the mesh may be done in two completely different ways: breaking 
elements ([[4] ]), or remeshing ([15]). For the purpose of this research, the remeshing 
technique is preferred, as it is compatible with both FEM and MFDM discretizations.

If there is no information on regularity (and convergence) of the data (like in 
experimental mechanics), then coefficient m may be set to one, so grid refinement 
parameter (4.10) is equal to (4.4).

(4-H)

This way, very important unification of discrete methods (like MFDM and FEM), and 
experimental data analysis has been done.

4.2 New hybrid theoreticallexperimental method of a posteriori estimation of 
“experimental points” grid density

The global and local error parameters for experimental data in each experimental 
point may be reinterpreted from equations (4.1) and (4.2) as

5
-rex (4.12)

so the experimental grid refinement parameter (EGRP) for the i-th point is introduced 
as a combination of the global and local parameters [[2 ] ]

^  exp __ ^  exp̂  exp __ \\e\m\

U(|)
(4.13)

where ||e||aH(;) is the 'required ' or admissible error norm in the i-th experimental point.
This way features of the measuring devices or other “experimental errors” may be 
introduced.

Theoretica l or approximation based points re finem ent p a ra m e te rs  (TPRP) may be 
introduced from optimality criteria (4.5) and (4.6)
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4 U\\(«)‘

jZ t h e o r  __ n
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'_Q > 
Q\  1 y

(4.14)

for equal error distribution [15] and for the equal specific error distribution [[2] ] in 
each experimental point.

New th eo re tica l or approximation based points re fin em en t p a ra m e te rs  (TPRP) may 
be defined by combining local and global optimality criteria

j z t h e o r  _  ^ m e o r ^ t h e o r ^ „ (4.15)

where
£  ih e o r

»IMI
(4.16)

Coefficient m in numerical method depends on theory. Here, this coefficient may be 
set to one or to J4 as in problems with singularities (like in analysis of boundary 
problems using numerical methods - FEM or MFDM).

If one has no information on experimental error TPRP parameter may be used. If one 
has to take into account both experimental and as theoretical (approximation) errors 
one may use the following proposition of combined theoretical/experimental points 
refinement parameter (CTEPRP)

£ =  ( l - X ) % heor +  X ^ xp (4.17)

where coefficient X decides how much of “experimental estimation” will be used in 
analysis. 1 -  X is part of estimate due to approximation optimality criteria.
Magnitude of X parameter depends on “user”. It is no easy to decide how much of 
“experiment” or how much of “theory” should be taken into acocunt. Investigations on 
this extremally important topic are under currently performed.

4.3. Error and experimental mesh (grid) density evaluation strategy in saw cut 
experimental data

Crack nucleation propagation and failure of railroad car wheels is greatly 
influenced by residual stresses existing in those wheels, as a result of manufacturing 
and service conditions. The knowledge of residual stress distribution in wheels is 
thus required.

Experimental data used for residual stress reconstruction is collected during radial 
saw cutting of a wheel in laboratory conditions in order to relieve residual stresses 
and strains, see Fig. 4.1. In order to obtain reasonable residual stress estimation, the 
additional approximation process, which simultaneously uses error estimation 
procedures for considered problem is applied.

620



(displacements)

Fig. 4.1 Measurements taken at saw cut [19]

W heel saw cut experim ental data may be evaluated using equations (4.1) and (4.2). 
O f course, density o f experimental points depends on local (4.2) condition i.e. error at 
experimental points m ust be bound by certain adm issible value. T h e  g l o b a l  a n d  l o c a l  
e r r o r  r e f i n e m e n t  p a r a m e t e r s  may be defined from equations (4.1) and (4.2) as in 
FEM analysis. Combining both global (4.1) and local (4.2) criteria one obtains the 
same form ula f o r  t h e  m e s h  r e f i n e m e n t  p a r a m e t e r  at the i-th experimental point like in 
the FEM. W hat does mesh refinement parameter in experim ent mean? It means that 
an experimental value at certain points changes too rapidly when compared to the 
mean value and local density o f experimental points. In other words, density o f 
experimental points m ust be increased in certain part o f the region, it is simply too 
low to properly describe the gradients o f the measured function. New, required 
density is computed by form ula (4.7)-| - discrete form  or (4.7)2 " continuous form. 
One can take into account a weighting factor like an area assigned to experimental 
point (see eq. (4.7)). This is a proper definition of the admissible error at a point. 
Equations (4.8), (4.9) and (4.10) are not valid here because one does not have any 
information on the convergence o f experimental results w ith respect to the density o f 
experimental points (one may use directly (4.4)). As was mentioned above, th is very 
important problem may be solved by setting convergence rate to one, but any other 
physically justified value may be used. For example, if discontinuity is present (at 
point o r along line o r surface), convergence rate is substantia lly lower than one (in 
numerical analysis is usually set to 0.5). This fact may be inserted into new 
experimental grid density distribution.
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5. Approximation and aposteriori error analysis of the physical data
An error analysis described above has been applied to a problem of wheel saw cut 

data approximation and to calculate influence matrix coefficients (see [11]). The 
MFDM Approximation [[1] ,8 ,[9] ,11] has been applied. In the presented examples 
fictitious (discrete!) mesh generated previously: Fig. 5.1 (flange side of the wheel) 
has been used and the error has been determined at the experimental points.

In numerical calculations the data coming form the wheel #2 cutting process have 
been considered. 2 0  different lets of data: horizontal (circumferential) and vertical 
(radial) displacements coming from five cuts ([[3] ,8 ]) of the wheel have been used in 
calculations.

Three different effects concerning experimental data are investigated:

1. An approximation error of the measured values from experimental grid to one 
used in numerical analysis.

2. Evaluation of the measured values taking into account five different 'error' norms.
3. Estimation of the new experimental points’ grid density with equal distribution of 

an approximation error kept in mind.

Fig. 5.1 Flange side of the wheel, Experimental and fictitious grids
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In both analyses, local as well as global error norms were considered.
An approximation of experimental data with different order and different number of 

nodes in stars is presented in Fig. 5.2-5.25. Notation used: n_taylor - number of 
coefficients in Taylor series expansion, nodes - number of nodes in star, 
optim_par=optimality parameter g - mean distance between current node and central 
point of a star.

Results obtained are plotted in Fig. 5.2 -  5.27. These pictures are divided into 
3 different groups, namely:

Set #1 (Figs 5.2-5.19) - detailed analysis of data approximation performed for 
each of cuts: #1, #3, #5 of the wheel #2 for flange side (horizontal displacements) of 
the wheel with optimal approximation parameters taken into account. Approximation 
parameters taken into account are: n_taylor=8 , nodes=36, optim_par=2.

Detailed description of the pictures is as follows:
C u t# 1 :  Fig. 5.2, Flange side, cut #1, horizontal displacements, original data,
Fig. 5.3, Flange side, cut #1, horizontal displacements, approximated data after 7 

iterations,
Fig. 5.4, Flange side, cut #1, horizontal displacements, recovered data, no 

iterations,
Fig. 5.5, Flange side, cut#1, error of the horizontal displacements, no iterations,
Fig. 5.6, Flange side, cut #1, horizontal displacements, recovered data after 7 

iterations,
Fig. 5.7, Flange side, cut #1, error of the horizontal displacements, after 7 

iterations,
C u t# 3 \ flange side, horizontal displacements: Figs 5.8-5.13,
C u t #5: flange side, horizontal displacements: Figs 5.14-5.19,

As one can see, because the smoothness parameter has the optimum value, 
approximated data is smooth enough and the errors are very small. Iterations 
between experimental data and fictitious data considerably decrease the errors 
(magnitude of the error decreases approximately 10 times). In this way one may 
absolutely ensure that data at experimental points and data at fictitious points are 
very close to each other. Thus, one may use data at fictitious points for further 
analysis, and this process is under error control.

Set #2, cut#3 (Figs 5.20 -  5.22) - summarizing pictures concerning full evaluation 
of the approximation process and simultaneously experimental data, flange side - 
horizontal displacements: local error and grid density distribution for different 'error' 
norms. Detailed description of the pictures is as follows:

F la n g e  side, horizonta l d isplacem ents

Cut #3, flange side, Fig. 5.20, Error distribution and grid density distribution:
(1) horizontal displacements, (2) error norm #1 -  Sobolev norm of zero order,
(3) grid density - norm #1,
(4) error norm #2 -  Sobolev seminorm of first order, (5) grid density - norm #2,
(6 ) error norm #3 -  Sobolev norm of first order, (7) grid density - norm #3,
(8 ) displacement curvature, (9) error norm #4 -  Sobolev seminorm of second 

order,(10) grid density - norm #4,
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(11) error norm #5 -  Sobolev norm of second order, (12) grid density - norm #5.
Approximated experimental data may be filtered, using a certain treshold value. In 

Figs 5.21 and 5.22 area where required grid density is greater than 1.0% is shown 
for cut #3:

Cut #3, flange side Fig. 5.21, Error distribution and grid density distribution 
(izolines greater than 1.0 are shown), (1) - (12) like Fig. 5.20,

Cut #3, flange side Fig. 5.22, Error distribution and grid density distribution 
(izolines greater than 10.0 are shown), (1) - (12) like Fig. 5.20.

Set #3, cut#5 (Figs 5.23 -  5.25) - summarizing pictures concerning full evaluation 
of the approximation process and simultaneously experimental data, flange side - 
horizontal displacements: local error and grid density distribution for different ’error' 
norms. Detailed description of the pictures is as follows:

Cut #5, flange side, Fig. 5.23, Error distribution and grid density distribution,
(1) - (12) like Fig. 5.20.

In Figs 5.24 and 5.25 area where required grid density is greater than 1% and 
1 0 .0 % is shown for one cut:

- cut #5, flange side Fig. 5.24, Error distribution and grid density distribution 
(izolines greater than 1.0 are shown), (1) - (12) like Fig. 5.20,

- cut #5, flange side Fig. 5.25, Error distribution and grid density  distribution 
(izolines greater than 10.0 are shown), (1) - (12) like Fig. 5.20.

As one may see from the presented pictures, the results strongly depend on 
approximation order and the smoothness parameter value. Namely, if the 
smoothness parameter is large - data is too smooth, simultaneously this increases 
the error too (but the errors are not very large, however). If magnitude of the 
smoothness parameter tends to smaller values, data recovered at experimental 
points is closer to experimental one, but the data obtained at fictitious points is 
rougher.

Different error norms indicate different zones of the largest errors. Magnitudes of 
the norms differ essentially. Higher order norms give larger errors and are more 
sensitive to changes in the experimental values.

As one may observe, the zero order Sobolev norm indicates completely different 
zone of the largest errors than the first or second order Sobolev norm. From Figs 
5.20 -  5.25 one may see that cutting area is best traced by second Sobolev semi
norm.

An error analysis has been applied to approximation of numerical data coming 
from FEM analysis as well. Calculation of the influence coefficient matrix (see [[10] ]) 
needs approximation of numerical data from FEM mesh nodes to residual stress 
recovery procedure nodes (not presented here).
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6. New adaptive procedure of experiment planning

As a practical result of introduced error analysis, new adaptive procedure of 
experiments planning is possible.

Experimental method should take into account character of the measured function, 
it cannot be separated from character of measured physical field. Simply speaking, in 
regions where gradients (and curvatures) of measured field are larger, one requires 
m an y  m o re  experimental points. Presented approach gives a theoretical foundation 
for above mentioned crucial condition in experimental mechanics.

Carrying out measurements is only first, important, but sometimes not the most 
important stage to have reliable experimental data because usually experimental 
data is approximated and evaluted. Therefore, mesurement process consists of:

1. A’priori estimation of experiment conditions and critical measurements 
parametes like locations and density (e.g. gauges), orientation of 
measurement grid and so on ....

2. Measurement -  experimental data collection togehter with enviromental 
parameters.

3. Approximation (smoothing) and evaluation of experimental data
4. New grid density of experimental points evaluation -  a’posteriori 

evaluation of critical parameters and experiment conditions. Go to point 
#2.

One may distinguish two different situations:

1 . it is possible to simulate behavior of measured element or part of structure by 
means of numerical method (FEM, meshless FDM),

2 . it is not possible to simulate experiment numerically.

One may note that the experiment may be repeated or not, if yes, sometimes one 
has the chance to correct location of experimental points and other experimental 
conditions. If not, presented approach defines tools for proper data evaluation.

The following procedure is proposed for the case when numerical simulation of 
experiment is possible:

1. Solve problem numerically, with conditions for proper simulation of measured 
part of a structure or an element as good as possible.

2. Evaluate a’posteriori error and repeat calculation with new mesh (grid) density, to 
statisfy equidistribution error requirements.

3. Define experimental grid and transfer (project) numerical solution (by means of 
MWLS approximation) to this grid. Try to recover original solution from 
experimental grid using experimental grid as a primary grid and numerical grid as 
a secondary grid. Evaluate a’posteriori error and new experimental grid density 
function which takes into account equidistribution of an error.

4. If possible, change experimental point locations, repeat experiment and evaluate 
a’posteriori error distribution (now real error).

5. Evaluate measured data using estimated error (or new required experimental grid 
density) as a reliability index to decide which data have to be removed or taken 
with lowered weight.
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If meshless method is used in above mentioned procedure, numerical simulation 
of the experiment is very easy, because one may directly use experimental grid as 
numerical one, without any transformations and additional (approximation) errors.

In the case when numerical simulation of experiment is not possible, procedure is 
as follows:

1. After experiment evaluate a’posteriori error and calculate new mesh (grid) density 
of experimental points with equidistribution of error.

2. If is it possible change experimental point locations, repeat experiment and 
evaluate a’posteriori error distribution.

3. Evaluate measured data using determined error (or new required experimental 
grid density) as a reliability index to decide which data have to be removed or 
taken with lowered weight.

7. Final Remarks

Present work is devoted to description and evaluation of the fundamental methods 
of the physical data approximation and the aposteriori error estimation i.e. the 
methods based on differences between original, experimental data (or numerical 
ones coming from FEM/FDM analysis) and data approximated on fictitious mesh (see
[8])-

The aposteriori error analysis described above has been applied to the wheel saw 
cut data and numerical data coming from FEM analysis, using the Meshless Finite 
Difference approximation. The presented error analysis approach is of great value in 
determination of the required concentration of experimental points in the zones 
where the largest stress gradients have occurred.

The current research done on error estimation includes:
• generalization of the Zienkiewicz - Zhu postprocessing estimator concept [[15] ] 

for elastic problems in solid mechanics and its use in analysis of wheel saw cut 
data,

• determination of the optimal strategies for refinement of the experimental (or 
numerical) clouds of points, using different error norms (Sobolev norms up to 
second order),

• development of postprocessing techniques to enhance the solution accuracy 
using different number of nodes in stars, different approximation order (i.e. 2 nd or 
3rd order) and additional iterative process to smoothen the largest discrepancies 
between data on original (experimental) and fictitious (numerical) grids,

• formulation of the new adaptive  approach to experim ent p lann ing  a n d  carrying  
out, taking into account a’posteriori error estimation and distribution of 
experimental points with equidistributed error,

• analysis of wheel saw cut data, especially for wheel #2 (see R.Czarnek [3]), 5 
cuts of the wheel, both flange and 2 nd sides of the wheel analyzed,

• analysis of numerical data, coming from FEM analysis, for wheel #2 [11].
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Advantages of the error analysis performed on the experimental as well as 
numerical data (see FEM/FDM analysis [11]) have been shown. A significant step 
towards a new adaptive analysis (approximation) of the physical data was done. 
Besides, the approach presented here, yields formulation of new requirements 
against measurements devices possible, thus making way for adaptive experimental 
data collection.

The proposed further research includes: development of reliable error estimates 
for computed "physical fields" with the efficiency index close to 1 (approximated fields 
are very close to original ones), further development of the optimal strategies for 'h' 
adaptive refinement of the experimental data points cloud, development of adaptive 
modeling in which certain features of physical models are incorporated and stress 
analysis of deformation fields in rails and wheels.
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Fig.5.2, Cut#1, Flange side,
horizontal displacements,
original data, min=-1.25E-2, max=1.55E-2

Fig.5.3, Flange side, 
horizontal displacements, 
approximated data after 7 iterations

Fig. 5.4, Flange side, 
horizontal displacements, 
recovery data, no iteration

Fig. 5.6, Flange side,
horizontal displacements,
recovery data, after iterations

Fig.5.5, Flange side,
Error of the horizontal displacements, 
no iterations,
min=1.35E-5, max=7.46E-6, inc=1E-6

Fig.5.7, Flange side,
error of the horizontal displacements,
after 7 iterations,
min=-1.34E-6, max=2.40E-6, inc=5E-7
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Fig. 5.8, Cut #3, Flange side, 
horizontal displacements, 
original data, min=-4.48E-2, max=4.:

Fig. 5.9, Flange side, 
horizontal displacements, 

i-2 approximated data, after 7 iterations

Fig. 5.10, Flange side, 
horizontal displacements, 
recovery data, no iterations

Fig. 5.12, Flange side,
horizontal displacements,
recovery data, after 7 iterations

Fig. 5.11, Flange side,
error of the horizontal displacements,
no iteration,
min=-1.47E-4, max=1.10E-4, inc=2E-5

Fig. 5.13, Flange side,
error of the horizontal displacements,
after 7 iterations,
min=-2.12E-5, max=1.35E-5, inc=5E-6
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Fig. 5.14, Cut #5, Flange side,
horizontal displacements,
original data, min=-9.49E-2, max=9.00E-2

horizontal displacements, 
approximated data, after 7 iterations

Fig. 5.16, Flange side,
horizontal displacements, 
recovery data, no iterations

Fig. 5.18, Flange side,
horizontal displacements,
recovery data, after 7 iterations

Fig. 5.17, Flange side,
error of the horizontal displacements,
no iteration,
min=-3.25E-3, max=2.72E-3, inc=1E-3

Fig. 5.19, Flange side,
error of the horizontal displacements,
after 7 iterations,
min=-3.41 E-4, max=5.54E-4, inc=2E-4
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Fig.5 .21, Cut #3, Flange side:
- error distribution 20.00-
- grid density distribution 
(izolines greater than 1.0 
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T o p i c  2 . 6

R eco n s tru c tio n  o f  re s id u a l stresses in  ra ilro a d  veh ic le  wheels based
on enhanced saw cu t m easurem ents



Reconstruction o f  residual stresses in railroad vehicle wheels based 
on enhanced saw cut measurements

Thus following problems are intended to be addressed:

(i) Further development and improvement of numerical procedures used in the analysis of 
residual hoop stresses, in order to obtain better precision results use of 20-node brick 
elements

(ii) Residual hoop stress evaluation in all investigated wheels using 20-node elements in 
FEM calculations,

(Hi) More precise calculation of influence coefficients -  solving problems with about 450 000 
DOF (the size ofpreviously solved problems is about 150 000 DOF)

Ad (i) - done
Developing software necessary to computation of kinematically equivalent loads and 
computation of hoop stress in the non-cut part of the wheel (finite element method stress 
results are not used here)

Ad (ii) -  done
Results of all investigated wheels are included in this year report 

Ad (iii) -  done
For the first time the huge 400 thousand DOF problem has been solved in influence 
coefficients computation of the wheel #3. In each discrete problem about 40 right-hand side 
vectors occurred, and therefore the size of FEM problem has been limited to 400 thousand 
DOF.
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Reconstruction of residual stresses in railroad vehicle 
wheels based on enhanced saw cut measurements

Janusz Orkisz
Cracow University of Technology 

Andrzej Skrzat
Rzeszow University of Technology

1. Introduction

During service railroad car wheels develop residual stresses that can lead to premature, and in some 

instances, catastrophic failure. These stresses are mainly caused by thermal loadings (heavy braking) 

combined with cyclic contact stresses. Stresses are also influenced by wear of the wheel rim. A good 

understanding of residual stress distribution and its variation over time in service can help develop a 

better wheel design that would minimize the danger of catastrophic failure. Knowledge of this distribution 

can also help improve the techniques used for routine inspection of wheels and detection of potentially 

dangerous stress distributions.

In 1991 the US Department of Transportation began studies on improving the railway transportation 

safety. Within the confines of this program, the Concurrent Technologies Corporation carried out 

experimental destructive investigation of several railroad car wheels [2], In each test the wheel was 

radially cut. This caused partial residual hoop stress release. Effects of residual stress release could be 

observed on the wheel surface. Experimental data have been obtained by means of several different 

experimental techniques: moire interferometry (relative displacements), strain gauges (absolute strains) 

and clip gauges (absolute displacements). The locations of measurements are presented in Fig. 1. 

Unfortunately the experimental information alone does not suffice to reconstruct initial residual hoop 

stress.

The solution approach called “physically based enhancement of experimental data” [5], formulated, 

developed and tested in Cracow University of Technology during last years, is now the best available 

numerical tool to approximate residual hoop stress component in railroad car wheels. The precision of 

residual hoop stress approximation depends mainly on numerical tools used in experimental data
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processing, as well as on the precision of FEM analysis used to compute the influence coefficients 

necessary in presented approach. During last three years a significant progress has been made in the 

precision of influence coefficient calculations. Instead of previously used 8-node brick elements, 20-node 

brick elements have been introduced. Currently unit pressures are applied on finite elements, instead of 

unit forces. Such approach yields better precision of numerical calculations, especially in areas close to 

applied loads. The new version of commercial software used to calculate the coefficients (ADINA 8.0) 

allows for solving huge 3D problems by the finite element method. Thus the elastic problem size limit set 

at approximately 150 thousand DOF has been broken, and recently the 400 thousand DOF problem has 

been successfully solved. The numerical effort is enormous, but the precision of influence coefficients and 

the precision of residual stress approximation is much higher than ever before.

A benchmark test is presented in this report, which prove the efficiency and precision of the new 

approach in numerical calculations of influence coefficients (20-node elements, element pressures as 

loading). The results for all investigated wheels obtained for coarse finite element mesh are included as 

well. Finally the results for the wheel #3, obtained for the first time for the dense mesh are presented.
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moire interferometry 
(displacements)

Fig. 1 Measurements taken at the saw cut test

2. Formulation

2 .1 . In c re m e n ta l p r o c e d u r e

Formulation for the hoop stress reconstruction in the railroad vehicle wheel is based on measurements 

done at the saw cut test. The approach is formulated as a two-step non-linear constrained optimization 

problem [3].

Step one

Find the out-of-plane stresses <7out(X) = providing the minimum of the functional
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I = AOE+(l-A )4)T, A. g [0,1] ■ (D

while satisfying the equilibrium equation

| 1 °̂ee | (2)
dr r  d 9 cfe

and homogenous static boundary conditions for tractions

P r = P e  = P z =  0 • (3)

normal and tangent to the (r,z) plane (saw cut plane).

Here

O t = m T(a0U!) = —  \K2{a0U,)dV .
(4)

out V

is the theoretical part (a smoothness requirement for the curvature k  to be minimal) of the functional,

this way. The equilibrium equation is always satisfied then. In each case a family of solutions is obtained 

depending on a parameter A determined in the second part of procedure.

Step two.

Find the minimum A e [0,l] satisfying the local (5) and global (6) inequality constraints resulting from 

measurement precision.

while the experimental part Q>e(g 0!“ ) is a weighted measurement error (O r and are normalized). 

In the axial symmetry case a*=, = <r0z = 0, <7000 = 0, and only the hoop stress c00(r,z) can be found

||m“p -  w(|| -  < 0 i=1,2,...,n
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-A e ,fm< 0 , (5)

| J.exp -  8t | -  A8fm < 0.

-A®adm<0. (6)

Here «“ p, f  “ p, ^ exp and w,, e t j, 8 t are the experimental and approximated values of displacements, 

strains or COD measurements, Au f m, A e f m, A8 f m and h<badm are admissible experimental errors

resulting from measurement precision.
One may define the error functional as

The summation is extended over all experimental measurements of relative displacements K  ( uekxp - up to 

three displacement components at each point), strains L ( £^p - up to three strain tensor components at 

each point) and absolute displacements M. ( 8^p - one component at each point).

The functional (7) depends directly on measured quantities u ,e ,8  rather than on the primary unknowns - 

out-of-plane residual stresses in the cut zone cr"“' = {<r00, , a Qz . Thus u ,s ,5  have to be

expressed in terms of er°“' . Unloading process, releasing residual stresses during cutting, is assumed to

be elastic. Therefore appropriate influence functions may be used in order to replace u , £ , 8  by <7°“' . 

These influence functions are found numerically. Practical implementation requires evaluation of 
appropriate kernels by means of discrete analysis of a sequence of boundary value problems for the 

wheel in subsequent stages of the saw cut test. Thus, for each measured quantity it, £ ,8 ,  one obtains 

transformation matrices Au,A e,A s , where:
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« = 4,<C> e = A /g , S=AscC- (8)

This way one can express both the functional = 0 £(o^”' ) and al1 inequalities (5),(6) in terms of < f*t

as required.

2.2. Expression of measured quantities in terms of residual stresses <r“''

The body V  is considered to be linearly elastic, stress free and partially cut, loaded along the cut edge lc 

by tractions

P , = ”,< ( 0  ■ (9)

resulting from the residual stresses o f  released in the given cut layer, existing in the body before this

cut. The solution of such a boundary-value problem for a given cut depth may be written for both 2D and 
3D bodies in the following form:

Aut( x , l )  =  \ p k{Z )U ik{ x ,& ) d s { £ )  =  - \ e * { g ) n j {$ l U lk{x ,Z ,l)d s {£ ),
/ i

t e y i x j )  =  \ p k(£ )E Ijk{ x ,& ) d s ( £ )  =  - \ o * ( Z ) n s{€ )E ijk{x ,Z ,i)d s {%), (10)
/ I

AcriJ( x , l ) =  \ p k (g)S,]k (x , % ,l)ds{£) = -  j  o f  (£ )n s{g )S i]k (x, &  l)d s {£ ).
i i

Here Am,. , , Aa i} are changes in displacements, strains and stresses, respectively, at arbitrary point x

of the body V  when one layer of the body is cut. Kernels U ik,E jJk,SjJk present displacements, strains and

stresses, at a point x  of the body V when loaded by a normal unit force (see Fig. 2) applied at a point £  

located by the cut edge layer (in the neighbourhood of the cut layer).

646



Fig. 2 Body loaded by normal unit force

These kernels can be found by discrete analysis (FEM,FDM,BEM). Formulas (10) may be presented then 
in the following form:

A u ^ x J ^ p ^ Q U ^ U ) ^  = - E K » ^ ) |b ■
m m

m m

A < Tl { x , l ) = z ' Z l p k { £ , ) E 9k( x , £ , , ! ) A S m = - ^ ( a « n sE iJkA S \ m .

where ( )|hj=: ( and /,y,k,s=1,2 (2D case) or/,/,k,s=1,2,3 (3D case).

One can express now both the functional (7) and the inequalities (5),(6) in terms of required unknowns 

er^ e.g. formulas (5) can be written in the incremental way as follows:

wfxp UP* -  Auf™ < 0
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(12)
C P- E  E 9<t * \ - A £ ? m< 0 ,

4 7 - 2  Afcrs -  A<̂ “rfm < 0

The summation ^  is extended over all layers cut until all measurements of wiexp, £;exp, crexp have been
/

taken.
One may solve now the optimization problem of the step two replacing inequalities (5) and (6) by 

inequalities (12) expressed in terms of the primary unknowns Our required unknowns are the 

residual hoop stresses a i} existing in the body before any cut. One can easily find the relations between 

them and o~ in a way similar to looking for kernels U ik,E ijk,Sjjk (discrete analysis).

o - ,= [« K  <13)

Matrix [a ] is the matrix consisting of columns constituting stresses existing in a non-cut part of the body 

when loaded by normal unit forces applied at the point £ located at the cut edge (last layer cut). The 

matrix [tt] is not singular, therefore one can finally write the inequalities (12) as:

U,[aYa -A ufm <0,

^ T - I  E^aYa -Ae;dm<0,
(14)

aM V -  A S “dm < 0.
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3. Finite element simulation of the cutting process

As described in the previous chapter, the calculation of residual hoop stress component in railroad car 

wheels requires the knowledge of the relation between released residual stresses and measured 

quantities. Theoretical solution is not known because of complicated shape of the wheel and complex 

boundary conditions. Therefore, finite element analysis is introduced. During cutting, the stiffness of the 

wheel, as well as magnitudes of residual stresses in the non-cut part of the wheel changes. Therefore, 

FEM simulation of the cutting process has to be performed incrementally. In order to find the relation 

between released residual hoop stresses and measured quantities the set of boundary value problems 

has to be solved.

3.1. Unit fo rc e s  v e rs u s  unit p re s s u re s

It is known that the finite element method yields over stiffened results when displacement formulation is 

applied. The magnitudes of stresses, strains and displacements are underestimated. Therefore, influence 

coefficients used in the analysis of residual hoop stresses may be too small. The magnitudes of 

computed residual hoop stresses obtained from the analysis are too large ( see Eq. 11). The increase in 

the magnitude of hoop stresses depends on the precision of computed influence coefficients. Several 

numerical tests have been made to investigate the precision of computed influence coefficients. The 

following figures present the results of such benchmark tests performed for the same mechanical problem 

when different types of finite elements are used. The unit force is applied to the edge of 3D body (Fig. 3).
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Fig. 3 FEM model -  unit force applied 

The following figures are described in Table 1.

Table 1. Results of benchmark tests -  unit force is applied

Figure Type of element Max vertical displacement

Fig. 4 8-node brick 5.8e-7
Fig. 5 20-node brick 11.1 e-7
Fig. 6 27-node brick 15.5e-7

Fig. 7 8-node brick (dense mesh) 2.9e-7

One may notice in Table 1 and also in Fig. 4 -  Fig. 7, that the differences in the magnitude of vertical 

displacement is significant. The 8-node element model is about three times stiffer in the location of 

applied load, than the 27-node model. Moreover, even when dense mesh is used (Fig. 7) there is still no 
convergence to Fig. 6, which presents the most precise solution.
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Fig. 5 Results for 20-node brick elements

651



I

i

Fig. 6 Results for 27-node brick elements

Fig. 7 Results for 8-node brick elements -  dense mesh

Solutions presented in Fig. 4 to Fig. 7 have shown, that unit forces applied to the 3D FEM model don’t 

yield solutions converging with decreased size of element used. Therefore, unit pressures should be 

applied rather than equivalent concentrated loads. Practically, instead of the pressure, appropriate 

forces are applied in certain nodes of an element. These are kinematically equivalent forces. The next
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benchmark explained in Fig. 8 shows
forces. similar problem, but now unit pressures are applied instead of unit
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C - . .

Fig. 8
FEM model-unit pressure applied

The solution for the model
consisting of 8-node bricks is presented in Fig. 9 as an example.
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Fig. 10 Benchmark test -  unit pressure, different elements

Although the solution obtained for 27-node elements is the most flexible, the results of sufficiently high 

quality are obtained for 20-node elements as well. The FEM mesh consisting of 8-node bricks requires 

elements very small in size in order to obtain locally precise solution.

3.2. M agn itudes o f com pu ted  in fluence  coeffic ien ts

In this chapter benchmark tests are included in order to show, that different finite elements yield the 

solutions of different precision. The hoop strains are used as indicator of FEM solution quality. These 

strains constitute the numerical input data in the analysis of residual hoop stresses in railroad car wheels. 

For simplicity the two dimensional problem is considered.

Fig. 11 is the example of one finite element problem solution.
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In the first cut element #142 is loaded by normal unit pressure. Then in the second cut element #143 is 

loaded. Fig. 11 corresponds to the cut #4. Of course the boundary conditions are different for each cut i.e. 

in the non-cut part of the wheel on the bottom horizontal line vertical displacements are prohibited (in Fig 

11. letters “B”). In each of discrete problems the responses in measurement locations are found. These 

are displacements or numerically found strains in several nodes. Vertical strains corresponding to loading 

and boundary conditions shown in Fig. 11 are presented in Fig. 12
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Of course the quality of finite element method solution depends of the number and type of element used. 
If 8 node or 9 node elements are introduced the magnitudes of calculated strains changes. The following 
figures present finite element meshes and vertical strain distributions for 8 node and 9 node finite 
elements.

These strains constitute the elements of the influence matrix \ a \  (Eq. 13 and Eq. 14).
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Fig. 15 FEM cutting simulation, 9 node element used
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One may notice that although the strain distributions are similar, the strain magnitudes differ significantly. 

Because these strains constitute the influence coefficients necessary to analyse the residual hoop 

stresses in railroad car wheels, they influence the precision and magnitude of calculated stresses. The 

best results may be achieved when the very dense mesh consisting of the possibly highest order 

finite elements is used, but limitations of computer power and resources and the time of numerical 

computations, forces a reasonable compromise. For the three dimensional mesh these are 20 node 

brick elements which allow for relatively precise solution in reasonably short time.

4. Finite element wheel models

Each analyzed wheel (wheel #2 -  wheel #8) comes from different production series, therefore geometries 

of these wheels differ. Finite element mesh has to be developed separately for each investigated wheel. 

The following figures present 2D finite element meshes for investigated wheels’ cross sections. These 

meshes are rotated next, in order to form 3D finite element meshes consisting of 20-node brick elements.
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The following figure is an example of 3D FEM mesh used in numerical simulations of the cutting process. 

Table 2 summarizes the properties of presented meshes.
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Table 2 Discrete problems’ data

Wheel # Number of nodes Number of 
elements

Number of 
theoretical cuts

Number of 
unknown res. 
hoop stresses

3 43646 9350 14 207

4 47223 10175 13 212

5 45082 9648 15 257

6 49060 10584 15 271

8 49060 10584 15 271

5. Analysis of the experimental data

Typical experimental data comprise displacement fields registered on both sides of the wheel -  see Fig. 

8. Unfortunately these are relative displacements, which cannot be directly used in the analysis of 

residual stresses. It is reasonable to assume that displacement fields should be symmetrical 

(displacement component along the cut) or anti-symmetrical (displacement component perpendicular to 

the cut).
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Local coor. systems
Fig. 24 Moire interferometry measurements.

Unfortunately, measured displacement fields don’t satisfy symmetric/anti-symmetric requirement -  thus in 

numerical approach axial symmetry is assumed for residual hoop stresses and imposed on raw 

measured data. An example of the actual data is included in Fig. 25. Small crosses denote measurement 

locations.
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Fig. 25 Horizontal displacements [mm] after cut #3, flange side, wheel #5 (original data)

As mentioned above, this displacement distribution is not anti-symmetric. Moreover, measurements 

situated in cut part of the wheel -  area in the middle of the domain, where huge concentration occurs are 

very inaccurate, and therefore, have to be excluded from further analysis. In Fig. 26 presented is the 

same displacement component after removal of measurements mentioned.



50

Fig. 26 Horizontal displacements [mm] after cut #3, flange side, wheel #5 -  part of data is removed

Presented displacement distribution, although of high quality, still doesn’t satisfy the assumption of axial 

symmetry. Before differentiation, this displacement field is anti-symmetrized (for horizontal displacement 

component anti-symmetrization is required) as shown in Fig. 27. Small circles show locations of fictitious 

measurements i.e. points where function and derivatives are calculated.
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Fig. 27 Anti-symmetric displacement field, cut #3, flange side, wheel #5

Such displacement field is then numerically differentiated in order to obtain strains. Numerically found 

strains constitute the real input data in the analysis of residual hoop stresses. The above-presented 

displacements after differentiation give strain field shown in Fig. 28.

I
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Such data taken from one half of the cut wheel is used in the analysis of residual hoop stress. However, 

on the boundaries, the precision of numerical differentiation is usually low. Therefore, these fictitious 

i j measurements are removed additionally. Sometimes physical grating defects occur -  in these areas

measurements are burdened by significant errors and have to be removed as well.

The locations of original data and fictitious points don’t have to be the same. The grid of fictitious points is 

more dense than the original one. Thus the number of numerical input data in the analysis of residual 

! , stresses is increased, and therefore the problem is better conditioned. Such generation of experimental

j_ ! data cannot be overdone, because very dense grid of fictitious points an areas of small strain gradients

doesn't introduce any additional experimental information. As described in the next chapter, the saw cut 

process has to be numerically simulated, practically by the finite element method. In this model,
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displacements obtained in discrete points -  FEM nodes -  are differentiated to the same fictitious locations 

as in the analysis of experimental data.

The input data preparation process in hoop residual stresses analysis, should be conducted very carefully 

in order to exclude fatal experimental errors from the analysis. Practically any automatic numerical tool 

doesn’t guarantee the reliability of obtained strains. All numerically found strain fields have to be carefully 

checked by the program operator.

6. Residual hoop stress approximation

In this chapter presented are results of residual stress analysis in the investigated wheels. These are the

following wheels:

wheel #3 (36524-46 146)

wheel #4 (44543-46 146)

wheel #5 (26526 242)

wheel #6 (26508 242)

wheel #8 (26512)

The other wheels (wheel #1, wheel #2 and wheel #7) are not considered here, because for these wheels 

the profiles are not known. Therefore, the location of moire measurements is not known, and as influence 

coefficient cannot be computed properly. Final residual stress approximations for these wheels would be 

not reliable.

For each wheel considered here presented are the following residual stress distributions called 

respectively: case 1, case 2 and case 3

1. Residual hoop stress reconstruction (case 1) obtained when only moire measured displacements 

perpendicular to the cut, and registered for the deepest cut are taken into the analysis. These 

measurements are the most valuable ones.

2. Residual hoop stress reconstruction (case 2) obtained when all moire measured displacement 

components, as well as information resulting from all cuts are used in the analysis.

3. Residual hoop stress reconstruction (case 3) when strain gauge measurements are also used in the 

analysis.

All residual hoop stresses are expressed in [MPa], wheel dimensions (horizontal and vertical scales) are 

in [cm]. In order to present clearly residual stress distributions in all investigated wheels, each plot is 

scaled separately.
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Fig. 29 Residual hoop stress distribution [MPa] -  wheel #3, case 1
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Fig. 30 Residual hoop stress distribution [MPa] -  wheel #3, case 2
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Fig. 31 Residual hoop stress distribution [MPa] -  wheel #3, case 3

672



Fig. 32 Residual hoop stress distribution [MPa] -  wheel #4, case 1
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Fig. 33 Residual hoop stress distribution [MPa] -  wheel #4, case 2
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Fig. 34 Residual hoop stress distribution [MPa] -  wheel #4, case 3
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Fig- 35 Residual hoop stress distribution [MPa] -  wheel #5, case 1
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Fig. 36 Residual hoop stress distribution [MPa] -  wheel #5, case 2
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Fig. 37 Residual hoop stress distribution [MPa] -  wheel #5, case 3
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Fig. 38 Residual hoop stress distribution [MPa] -  wheel #6, case 1
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Fig- 39 Residual hoop stress distribution [MPa] -  wheel #6, case 2
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Fig. 40 Residual hoop stress distribution [MPa] -  wheel #6, case 3
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Fig. 41 Residual hoop stress distribution [MPa] -  wheel #8, case 1
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Fig. 42 Residual hoop stress distribution [MPa] -  wheel #8, case 2
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Fig. 43 Residual hoop stress distribution [MPa] -  wheel #8, case 3

7. Analysis of the wheel #3 -  dense mesh

7.1. Finite elem ent model

The new version of the ADINA program used to compute the influence coefficients allows for solving on a 

PC class computer problems having more than 200 thousand DOF. Simple tests have shown, that the
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size of linear problem cannot exceed 550 thousand DOF on 32-bit computer. Problems having above 600 

thousand DOF require powerful workstation and appropriate finite element method software, which 

currently are not available at Cracow University of Technology. The main goal of the last year's efforts 

was to establish the relation between the size of discrete problem solved in influence coefficient 

computation and distribution and magnitude of approximated residual hoop stresses in railroad car 

wheels. The new dense mesh has been developed recently for the wheel #3. The comparison of the old 

and the new mesh in the cross-section of this wheel is shown in Fig. 44 and Table 3.

Fig. 44 Coarse and dense 2D meshes -  wheel #3

Table 3. Coarse and new 3D mesh data -  wheel #3

Coarse mesh Dense mesh

Number of nodes 43643 137362

Number of elements 9350 30778

Number of DOF 150k 390k

Number of cuts 14 28

Avg. number of right hand side vectors 19 38
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7.2. Comparison of results obtained for wheel #3 for the coarse and dense mesh

In this chapter presented are preliminary results obtained for the wheel #3 when the new dense mesh is 

used in influence coefficients computation. Included results are obtained, when only measurements taken 

from the last deepest cut are used (both horizontal and vertical component). The same solution is found 

for previously used coarse mesh. Results are presented for the same values of X  parameter. It doesn’t 

mean that the solution conditions are exactly the same for both sets of approximations. Both theoretical 

and experimental part of the functional (1) are normalized, and therefore the same values of X  give only 

similar conditions, but they are comparable. In all examples no scaling to the value of the yield stress is 

made.
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Fig. 45 Residual hoop stress [MPa] -  coarse mesh, X  =0.4
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Fig. 46 Residual hoop stress [MPa] -  dense mesh, X =0.4
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Fig. 47 Residual hoop stress [MPa] -  coarse mesh, X  =0.5

689



Fig. 48 Residual hoop stress [MPa] -  dense mesh, X =0.5
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Fig. 51 Residual hoop stress [MPa] -  coarse mesh, X  =0.8
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One may notice, that all solutions obtained for the dense mesh are smoother, and the magnitudes of 
hoop residual stresses are smaller. Finite element model is always too stiff. Therefore, influence 

coefficients are too small, and residual hoop stresses are overestimated. The finite element model for 
which the magnitudes of obtained residual hoop stresses are smaller is better. Therefore, new 
approximations of residual hoop stresses in railroad car wheels are more precise that old ones.

8. Discussion on precision of influence coefficients

L  The main condition of proper residual stress approximation is the precise computation of influence

coefficients. During last years the great effort has been dircted towards discrete FEM analysis precise 
enough to model actual measurements taken at saw cut test. Instead of previously used lumped load 

(nodal forces) unit pressures (kinematically equivalent forces) are applied. To get better local strain 

approximation 20-node brick elements are used instead 8-node brick elements. Finally the new very 
dense FEM mesh is used for the wheel #3. The size of FEM problem is about 400 thousands degrees of 
freedom. It is worth stressing, that such huge problem has to be solved hundreds of times. Even on 

computer with 2GFIz processor this takes three weeks of continuous computations. Obtained solutions 

- are very precise in the sense of nodal displacements. Unfortunately, using the finite element method one
obtains the stress solution which is one order less accurate than the displacement solution. Equilibrium 

J conditions are satisfied only on the element level, for the whole model, and of course in nodes, but are
not satisfied locally e.g. on element faces.

! | Stresses computed in the non-cut part of the wheel form the influence force coefficient matrix. Simple

benchmark tests presented in this chapter have shown, that the precision of calculated stresses should 

j ! be improved. A flat plate fixed on one half and loaded by unit pressure is considered (Fig. 53)
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In the theoretical solution the stress component perpendicular to the free surface of the plate should be 

equal to the external loading i.e. should be -1 in those points where pressure is applied and zero 

elsewhere. Unfortunately this stress component in the loaded element (Fig. 53) in all Gaussian points is 

quite different than -1 (see Table 4). The local equilibrium conditions are not satisfied then.
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T a b l e  4  o ^  v a l u e s  i n  G a u s s i a n  p o i n t s

Point # °xx

Int point 111 -1 .93688E-01
Int point 112 -3 .01972E-01
Int point 113 -5 .50704E-01
Int point 121 -4.19131E-01
Int point 122 -4 .32373E-01
Int point 123 -5 .41274E-01
Int point 131 1.17798E-01
Int point 132 2 .21905E-01
Int point 133 2 .75142E-01
Int point 211 -3 .735G9E-01
Int point 212 -4 .84918E-01
Int point 213 -7 .36717E-01
Int point 221 -5 .02927E-01
Int point 222 -5 .19235E-01
Int point 223 -6 .31202E-01
Int point 231 1 .30086E-01
Int point 232 2 .31127E-01
Int point 233 2.81297E-01
Int point 311 -1 .93688E-01
Int point 312 -3 .01972E-01
Int point 313 -5 .50704E-01
Int point 321 -4 .19131E-01
Int point 322 -4 .32373E-01
Int point 323 -5.41274E-01
Int point 331 1.17798E-01
Int point 332 2.21905E-01
Int point 333 2 .75142E-01

This difference between theoretical and computed value of <7XX is a result of the way, the loading is 

applied (kinematically equivalent forces) and by the stiffness of neighbour elements. The influence of 

these elements doesn’t allow for reaching the theoretical value of G x x  even for much denser mesh. Much

better result may be obtained, when the whole group of elements is loaded by unit pressure and the 

dense mesh is used (Fig. 54).
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Fig. 54 Group of element loaded by unit pressure
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In this test the component in the element surrounded by loaded elements is close to the theoretical 

value (see Table 5)
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T a b l e  5  a „  v a l u e s  i n  G a u s s i a n  p o i n t s

Point it °xx

Int point 111 -9.24996E-01
Int point 112 -9 .51387E-01
Int point 113 -1 .03166E+00
Int point 121 -9 .548S6E-01
Int point 122 -9 .45228E-01
Int point 123 -9 .88472E-01
Int point 131 -9.91747E-01
Int point 132 -9 .44065E-01
Int point 133 -9.48261E-01
Int point 211 -9 .50042E-01
Int point 212 -9 .65192E-01
Int point 213 -1 .03540E+00
Int point 221 -9 .79670E-01
Int point 222 -9.58291E-01
Int point 223 -9 .90967E-01
Int point 231 -1 .01672E+00
Int point 232 -9 .56798E-01
Int point 233 -9 .49925E-01
Int point 311 -9 .70092E-01
Int point 312 -9 .72245E-01
Int point 313 -1 .03063E+00
Int point 321 -9 .99955E-01
Int point 322 -9 .65079E-01
Int point 323 -9 .85428E-01
Int point 331 -1 .03765E+00
Int point 332 -9.6373IE-01
Int point 333 -9 .44032E-01

The above tests have shown, that the best results in the sense of locally computed stresses may be 
obtained when the patches consisting of finite elements are loaded by unit pressures. The inner element 

of the patch yields the best stress result.
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9. F inal con c lu s io n s

Solution approach proposed and carefully tested in recent years has made possible high quality 
approximations of residual hoop stresses in railroad car wheels. During last years a significant progress 
has been made in enhancing influence coefficients calculations. Higher order finite elements have been 
introduced. Instead of unit forces, unit pressures have been applied in order to obtain more precise strain 

distributions. Finally very dense mesh has been used for the wheel #3.

Appropriate benchmark tests have proved efficiency of the new approach. Computed influence 

coefficients are more precise nowadays due to higher order finite elements used, the type of loading 

applied to elements and the size of the discrete problem. Residual stress approximations are of good 
quality and they are similar for different measurement components and for different cut depths.

There are many factors which influence the quality of approximated residual stresses. First of all 
experimental results are never 100% precise. Sometimes mechanical damages may occur like in the 
wheel #3, flange side, the deepest cut. If erroneous or uncertain data are input into analysis, they 

influence adversely the final solution. The second important factor is the precision of influence coefficients 

computed numerically. Important is not only the size of solved discrete problem, but also type of elements 
used in FEM an the way the loading is applied. Even for the same finite element mesh, the magnitudes 
of hoop residual stresses may differ significantly.

In the simulation of cutting process by finite element, hardware and software limits have been reached. 
The solution approach and numerical procedures have been optimised very carefully in order to obtain 

the best possible results. However there is still a chance to improve the residual hoop stress 
approximation quality, by applying the loading to the patches of elements instead of applying it to the 

separate elements.
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T o p i c  2 . 7

F a i lu r e  m o d e  a n d  l i f e  p r e d ic t io n  o f  r a i lw a y  r a i ls



Failure mode and life prediction of railway rails

Further preliminary analysis of the influence the residual stresses on fatigue failure 
modes and fatigue service life of railroad rails has been performed. At first the crack 

nucleation problem is considered basing on the classic stress-life (S-N) approaches 
to fatigue life estimation and initial ability to grow crack is investigated (topic 2.7.1). 
The role of the total stresses has been examined as a sum of actual stresses and 

residual stresses. The magnitude and distribution of these stresses determines rail 
failure modes and is used to predict service life (topic 2.7.2). The current knowledge 

on the problem in mechanical understanding of rail fatigue are considered. A 
preliminary analysis of the role of the residual stresses in the railroad rails in both 

crack nucleation and growth is discussed. In this work one assumes, that single point 
wheel/rail contact at several central and off central rail localization appears. The 
needed computer programs have been developed and numerical analyses have 

been carried out. One assumes that examined body is subject to damage by 
repeated cycles of altering stresses. In present work 132 RE railroad rail subject to 

15 ton wheel load was analyzed. It was realized for three localization of loading. The 

results are obtained using own computer program. The shortest life to fatigue crack 

nucleation was predicted for a neighborhood of the rail running surface (top of the rail 
head) (topic 2.7.3).
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Further investigation and testing of the proposed solution approach to failure 
analysis and life prediction of railroad rails

W. Karmowski. J. Orkisz 

Abstract

Further preliminary analysis of the influence the residual stresses have on fatigue 
failure modes and fatigue service life of railroad rails is the goal of this work. At first the 
crack nucleation problem is considered based on the classic stress-life (S-N) 
approaches to fatigue life estimation. The crack propagation problem in the case of off 
center force localization has been considered. Initial ability to grow crack is investigated. 
The role of residual stresses has been examined. It is expected that the detailed 
analysis will show whether available experimental data is sufficient of rail failure and life 
prediction analysis. This problem has been discussed in the report [9], where total 
stresses in the central loading case were investigated.

1. Introduction

Crack nucleation in railroad rails and resulting failure present a very important 
problem in railway practice. Therefore, service life prediction is a significant goal of 
theoretical works. Crack growth depends mainly on the distribution of total stresses 
throughout the rail [4, 5, 7, 8, 15, 16, 17, 23, 25, 26], which is a sum of actual stresses 
and residual stresses. The magnitude and distribution of these stresses determines rail 
failure modes and may be used to predict service life. A knowledge of the residual stress 
distribution is crucial only if they constitute a significant part of the total stresses.

Experiments and theoretical predictions indicate that residual stresses in railroad 
rails may be large and therefore can not be neglected a'priori. Therefore, without 
reasonably accurate residual stresses included, failure mode and life prediction analyses 
may provide inaccurate estimates.

The current state of the art in mechanical understanding of rail fatigue is 
considered. A contemporary approach to fatigue in metals is presented in [25]. Railroad 
rail fatigue problems were broadly discussed and an engineering solution approach was 
proposed in [17]. Recent increases in freight car axle loads have created the need for 
further development and verification of the current approach. Thus an updated approach 
to rail failure analysis and service life prediction has been recently discussed and 
presented in [12].

A preliminary analysis of the role the residual stresses play in the railroad rails in 
both crack nucleation and growth is the goal of this work. It is based on the works [12, 
13].

It is assumed here, that single point wheel/rail contact appears at several central 
and off central rail locations. Two points contact and wheel wandering analysis are left 
for the future when interaction of the neighboring cars [17] will be discussed. The rail is 
treated as a collection of bars i.e. only axial stress is taken into account instead of full 
stress tensor components. General case will be considered in the future basing on
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concepts given e.g. in [22, 23]. Additionally one assumes that micro cracks are uniformly 
distributed over the rail cross section. Analysis takes into account LEFM laws for initial 
crack growth only (Paris [19] and Elber [3] laws) when no crack growth investigation has 
been performed. Investigation of the stress-life (S-N) type approach to fatigue life 
estimation of railroad rails has been performed. The needed computer programs have 
been developed and numerical analyses have been carried out.

2. Estimation of crack nucleation life

Influence of residual stresses on the crack nucleation is considered. The total 
stresses are the sum of elastic stresses (due to loading) and residual stresses 
(independent of rail longitudinal axis). They may be presented as:

^  total (x, y>z ) = o elastic (y, z )  +  a residual (x, y, z ) , ( 1)

where "x" is a longitudinal axis, "z" is a vertical axis and "y" transverse axis.
The longitudinal elastic stress component c™ for one force located at the zero 
longitudinal coordinate exhibits dependency shown in Fig. 1., when using beam rail 
model ([17]),

Fig. 1. The longitudinal stress component Cxx-

This Oxx stress component distribution in rail has three characteristic points with respect 
to wheel/rail contact location:

1. compressive stress maximum for
2. tensile stress maximum for
3. zero elastic axial stresses in infinity

oIIX

g (o) ,

x  =  X max ^(X m ax

X  =  oo o (°° ) .
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Stresses at these points are:

a l = o E(0) + c r 

<52=<*E(Xmax) + a r (2)
o  3 -  a

where aE,ar are elastic and residual stresses. These three situations happen at every
point along the rail length during vehicle wheel motion. Therefore, minimum and 
maximum stresses/strains at any point may be found by taking extreme of the three 
following total stress and strain values

Ondn = min((CT1|,|CT2|,|cT3 |) =max(|a1|,|a2|,|o3 |)

Alternate and average stresses be defined as

(3 )

0  _ ^max ^min _ ^max ^min (4 )

These formulas will be used to estimate life prediction in stress criteria.
In the S-N approach one assumes that examined body is subject to damage by 

repeated cycles of altering stresses. The most common Basquin [1] theory states that 
life prediction is a function of ultimate stress (Su), two fatigue material constants (A 
and B ) and two state parameters: altering stress (Sa) and medium stress (Sm). This 
rule has the form

i + i = i (S )

where SNf=A(Nf)B. The other equation proposed (due to Gerber)

sa f s m Y
— +
s s„n f l  u 7

(6 )

seems to be erroneous because quantity Sm may be negative and in such a case it 
leads to wrong results. The equation

- ^ -+ ^ -  = 1, (7)
SNf qf

where qf is true fracture strength gives almost the same results as the Basquin 
equation. Material constant Su is found from basic material measurements. Equation
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(9) may be used to find life prediction of the railroad rail. Taking into account that for 
Nf =1 SNf =SU one obtains A = SU. B may be found based on experimental fact that
life prediction of railroad rail may be assumed as equal to 10k, where k=1-̂ 8, if k=8 i.e. 
fully reversed fatigue limit, then

Sf =Su(l 0 *J  (8)

and finally

Nf = exp 8 lnlO

V

ln-
s u - s m

In—
S„

(9 )

3. The analysis of capabilities to predict railroad rail life.

In present work 132 RE railroad rail subject to 15 ton wheel load was analyzed. 
The analysis was performed for three loading locations, namely when force is on the 
axis of symmetry, and offset by 0.33" and 0.5" from the centerline. The following material 
constant values: Su=115 ksi, Sf=67 ksi ([17]) has been used. At first foundation
modulus "k" has been chosen as 2000 psi.

Distributions of: cE(0), aE(X[nax), a,, o2, o3, o ^ ,  o ^ ,  oa, om and Nf in the rail
head are presented in the figures (2-31) for the cases when contact force is located on 
the vertical axis of symmetry, and is offset by 0.33" and 0.5". These values have been 
obtained using computer program prepared by first author basing on the equations 
presented in [17] and residual stresses have been obtained by M. Pazdanowski [20].
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symmetric case

x

Fig. 6. D istribution of the o 3
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Fig. 7. Distribution of the Fig. 8 . Distribution of the o n

Fig. 9. Distribution of the aa Fig. 10. Distribution of the om

Fig. 11. Distribution of the Nf
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off center (0.33")

Fig. 16. Distribution of the c3
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Fig. 17. Distribution of the Fig. 18. Distribution o f the
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off center (0.5")

Fig. 22. Distribution of the oE(0) Fig. 23. Distribution of the oE(xmax)

Fig. 26. Distribution of the a3
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Fig. 29. Distribution of the aa Fig. 30. Distribution of the cm

x

Fig. 31. Distribution of the Nf
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Figs. 32 and 33 present elastic stress at the rail/wheel contact point and in the far 
distance when foundation modulus is changed to 5000 psi.

4. Final Remarks
1. The shortest life to fatigue crack nucleation was predicted for a neighborhood of the 

rail running surface (top of the rail head);
2. The fatigue life Nf is mostly affected by contact loading, while influence of residual 

stresses or on Nf is negligible;
3. Application of the precise Finite Strip Method solutions to evaluate the elastic 

stresses is necessary;
4. It is expected that taking into consideration multiaxial stresses will results in more 

precise S-N analysis;
5. Analysis of the influence residual the stresses have on rail failure and life prediction 

in the case of off-center wheel/rail contacts shows rather small impact on crack 
nucleation process. It is expected that it will be significant in case of crack 
propagation speed as was proved in report [9].

6. Use of a more realistic, two wheel truck loading, instead of a single wheel loading is 
needed for rail fatigue analysis;
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Shake-down approach to analysis of residual stresses in railroad rails
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ABSTRACT

Summary Considered is a problem of analysis of residual stresses arising in railroad rails due to 
manufacturing and service. Discussed are formulation of the problem, various computer methods 
of theoretical prediction of these stresses as well as some solution results.

1. Introduction
Both the safety of passenger travel and the reliability of railroad freight transport are essentially 

affected by the behavior of rail and vehicle wheels. Thorough investigation of this problem is needed as 
significant increases in traffic and axle loads take place. Such increases will lead to greater rates of rail 
wear and fracture.

Better material and maintenance practices reduce rail failures and extend rail wear life. However, 
many rails stay in service long enough to develop fatigue cracks mainly caused by the repeated action of 
rolling wheel contact loads.

Both crack nucleation and propagation are driven by stress concentrations, and may be predicted if 
total stresses are known. These stresses are comprised of live and residual stresses. The live stresses are 
those generated by applied loads. Their evaluation, though sometimes troublesome, may be obtained by 
routine engineering analysis. In railroad rails and vehicle wheels they are generated both during 
manufacture and in service. Unfortunately, residual stress analysis is usually by no means a routine 
problem.

Residual stresses are known to be a significant component of the total stresses, which affect fatigue 
crack nucleation and propagation and rail fatigue life. Therefore, no reliable prediction of crack 
development (and consequently rail fracture, fatigue life etc.) can be made without knowing the residual 
stresses. Reliable methods of theoretical prediction of residual stresses as well as their experimental 
evaluation are required first.

Residual stresses and strains arising in both railroad rails and vehicle wheels due to manufacturing 
and service conditions are investigated [1, 2]. The main objective of the entire research program is to 
develop discrete methods for theoretical prediction and/or enhancement of experimental data on residual 
stresses in railroad rails.
2. Solution tools development

The basic (shake-down solution approach, elastic plastic material, proportional loadings, elastic- 
plastic rolling contact replaced by simulated Hertzian contact stresses) theoretical-numerical prediction of 
residual stresses and strains in railroad rails under simulated service conditions (wandering wheel/rail 
contact) is already available. This technique provides rough but reasonable results obtained by means of 
specially developed, reliable and mutually verified solution tools based on the newly proposed, enhanced 
shake-down approach.
5. Methods development

Several methods were originated, designed and developed as well as tested and applied within the 
project:
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-  for theoretical prediction (shake-down approach, analyzed either by the constrained minimization of 
residual stress complementary energy or by modified Zarka methods);introduced and used were 
new discrete models based on the meshless finite difference (MFDM), hybrid finite element 
(HFEM) and boundary element (BEM) methods;

-  for physically based enhancement of experimental or numerical data (Global and Global/Local 
smoothing methods -  MFDM based approach);

-  other (e.g., new constrained optimization method, and a’posteriori error analysis).
4. Results

Effective numerical analysis of residual stresses and strains in railroad rails and vehicle wheels was 
carried out based on the theoretical formulation and computer solution approach developed.
5. Currently developed approach and further research proposed

The very basic results of residual stress analysis were effectively obtained in the last few years. 
However, this was at the price of several limiting assumptions, which were needed due to the complexity 
of the problem. The most significant of these limitations include:
-  Relatively simple material description - elastic-plastic; only strain hardening taken into account, 

while softening, fatigue, damage, fracture, wear, viscosity, temperature changes, are neglected.
-  Simplified loading. The true elastic-plastic rolling rail/wheel contact is simulated by elastic Hertz 

contact; loading is assumed as a proportional one.
Results of the theoretical residual stress analysis, obtained so far, are reasonable and reliable but 

subject to limitations due to assumptions made. Therefore, these results may be considered only as an 
approximate but a reasonable solution to the problem in question. The current and further research 
program is oriented mainly towards relaxation of the restricting assumptions and evaluation of their 
influence on the predicted residual stresses. Its main objective, therefore, is development of advanced 
residual stress analysis. It includes:
-  Model enhancement incorporating several of the previously neglected effects
-  Development and application of numerical methods which already have been the subject of 

preliminary investigation like neural network approach, as well as new ones, designed for 
theoretical and experimental residual stress analysis

-  Further analysis of particular problems of railroad rails and vehicle wheels
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Residual Stress Reconstruction in Railroad Passenger and Freight Car Wheels
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Sum m ary

D uring service ra ilroad  car w heels develop residual stresses w hich  can  lead  to  prem ature, and  in som e instances, catastroph ic failure. 
T hese stresses are  m ain ly  caused  by therm al loadings (heavy braking) com bined w ith cyclic con tact stresses. S tresses are also 
influenced by w ear o f  th e  w heel rim . A  good understanding o f  residual stress d istribution  and its variation  over tim e in  service can 
help  develop a be tte r w heel design  that w ould  m inim ize the danger o f  catastrophic failure. K now ledge o f  th is d istribu tion  can also 
help  im prove the  techn iques used  fo r rou tine inspection o f  w heels and  detection  o f  po ten tia lly  dangerous stress d istributions. In th is 
paper presented  is the so lu tion  approach called  “physically  based enhancem ent o f  experim ental data” w hich  a llow s for residual hoop 
stress approxim ation . It u ses sim ultaneously  both  experim ental in form ation  ob tained by  m eans o f  d ifferent experim ental techniques, 
and  theoretical in form ation  on  considered  problem . The typical saw  cu t test is used  as a  source o f  experim ental data. The problem  is 
solved as n on linear constra ined  optim isation.

Keywords: residual stress, optimisation, fin ite  element method

1. In tro d u c tio n

The solu tion  approach  called  “physically  based 
enhancem ent o f  experim ental da ta” , w hich  allow s for residual 
hoop stress approx im ation , is p resen ted  in  th is paper. It uses 
sim ultaneously  both: experim ental inform ation obtained by 
m eans o f  d ifferen t experim ental techniques, and theoretical 
inform ation  on  considered  problem . The typical saw  cut test is 
used  as a  source o f  experim ental data,. The stress reconstruction  
is a non-linear and  ill p osed  prob lem  as a  resu lt o f  factors like: 
on ly  partial re lease o f  hoop  residual stresses due to  saw cut, 
red istribu tion  o f  stresses and changing w heel stiffness during 
cutting, w eak re la tion  betw een m easured  data and released 
residual stresses, and  huge am ount o f  necessary  com putational 
data. T he so lu tion  approach  is form ulated as constrained 
m inim isation  o f  th e  functional (1), consisting  o f  the non- 

d im ensional theoretical O  T (requirem ent o f  the suitably sm ooth 

approxim ation) and experim ental O E (w eighted approxim ation 
error) parts.

I  =  k b E ,  Ae[o, l] (1)

H ere

Ot = 4)7'(<t"“')=—  (2)
Kml l

The sum m ation  is extended over all experim ental 
m easurem ents o f  relative d isp lacem ents, strains and  absolu te  
displacem ents.

(displa:emeits)

Figure 1. M easurem ents taken  at saw  cut test

is the theoretical part (a  sm oothness requirem ent for the 
stress d istribu tion  curvature k  to be m inim al) o f  the functional, 

w hile  the experim ental part 0 E{p°ui) is a  w eighted 

m easurem ent error, and  A is a  w eigh ting  param eter.

d>£ ~uk
admk

-,2
(3)

The param eter X should satisfy  the  local (4) and  global 

(5) inequality  constrain ts resulting  from  m easurem ent precision.

ja f tp -  a, | -  Aa < 0 (4)

( 5 )
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H ere u™p , and  u t , are the experim ental and approxim ated 

values o f  d isp lacem ents, strains and  C O D  m easurem ents, w hile 

Au-‘dm , and  AO""*” are adm issib le  experim ental errors resulting  

from  m easurem ent p rec ision  (e.g. th e  standard deviation).

2. In flu en ce  co effic ie n ts  c a lc u la tio n

R esidual hoop  stress approx im ation  in railroad car w heels 
requ ires know ledge o f  re lation  betw een released  hoop stresses 
and  m easured  quantities. It is based  on influence function, 
therefore, the w hole  cu tting  process has to  be sim ulated by  a 
d iscrete  approach. A nalytical sim ulation  is im possible here, 
because o f  com plica ted  w heel shape. F in ite elem ent m ethod is 
used  during d iscrete  analysis. T he professional FEM  system  -  
A D IN A  8.0 is applied . N um erical analysis requires so lving 
hundreds o f  boundary  value problem s corresponding to 
subsequent cu tting  stages and  subsequent unit forces applied  to 
the  w heel cu t surface. F o r each  p rob lem  un it loads (forces or 
pressures) are app lied  in  each  cut n ode or elem ent.

The fo llow ing figure show s an  exam ple o f  3D  FEM  m esh 
used in  num erical sim ulation  o f  the  cutting process.

3. N u m e r ic a l re su lts

The typical resu lt o f  residual hoop  stress approxim ation  are 
presen ted  below . A ll residual hoop stresses are  in [MPa],

F igure 4. R esidual hoop  stress -  freight w heel

4. F in a l r e m a rk s

R econstruction  o f  the  residual hoop  stress in  w heels, based 
on  experim ental data m easured  at saw  cut, presents an  ill- 
conditioned (stresses are recovered  far aw ay  from  the  
m easurem ents taken on  the  w heel surface), inverse problem . It 
is ve ry  sensitive to  data  u sed  and  a  reconstruction  technique 
app lied  i.e. the final resu lts m ay  be ob tained  w ith  a lim ited  
p recision  only, dependent on  data num ber and quality  as w ell as 
on  a  solution approach used. R eliable  so lu tion  o f  such an  ill- 
conditioned prob lem  requ ires num erous experim ental data  
m easured  at h igh  precision  as w ell as a solid  num erical stress 
recovery  approach. A vailable experim ental data  should clearly  
outnum ber num erically  sought unknow ns. In  o rder to  increase 
the experim ental data overall quality  an a prio ri da ta  filtering 
process is needed.

A  novel, physically  based  approx im ation  approach applied  
here, taking into account a t the sam e tim e all available 
inform ation on the considered  problem , nam ely  experim ental 
data  relations com ing from  the theory, and heuristic 
assum ptions (e.g. sm oothness o f  stress distributions) -  proved 
to  prov ide reasonable resu lts for the reconstructed  residual hoop 
stresses.
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A bstract

D evelopm ent o f  a  generalized  beam  m odel for e la s tic -p las tic  analysis o f  ra ilro ad  rails is the m ain  ob jec tive  o f  th is research . It is 
a part o f  an  engineering  approach  to  estim ate residual stresses resu lting  from  th e  ro lle r straightening process.

The approach  for solving beam s has been proposed and app lied  in  [3], [4]. Statically  indeterm inate beam s using e la s tic -p la s tic  
(w ith  lin ear harden ing ) m ateria l m odel m ay  be solved, load  cou ld  be defined  by force o r d isp lacem ent and  beam  cou ld  have  any 
shape in  the  cross-sec tion . B eam  could  be prelim inary deform ed. Scope o f  this paper is lim ited to  test and validate  ob ta ined  results.

Keywords: roller straightening, elastic-plastic beam bending, FD M

1. In tro d u c tio n .

The m ain  ob jective o f  th is paper is developm ent o f  a 
generalized  beam  m odel for e las tic -p las tic  analysis o f  
railroad rails w ork ing  in  service conditions. It is a p art o f  an 
engineering  approach  to  estim ation  o f  residual stresses in 
railroad  rail resu lting  from  the ro lle r straightening process.

D uring the  m anufacture p rocess railroad  rails are subject 
to  quenching. D ue to  non  un ifo rm  cooling  rate the ra il  gains 
an  initial curvature and  residual stresses. The curvature is 
reduced in  ro lle r-s tra ig h ten in g  process. D uring th is process 
p lastica lly  defo rm ed  ra il passes th rough  a set o f  ro lls w ith  
horizontal axes and  thus is straightened in  the vertical 
direction by  a lte rn a te  p ress ing  e ith er on  the top  o f  th e  head  or 
on  the  bo ttom  o f  the  base. A ccord ing  to  the experim ental 
m easurem ents and theoretical analysis ro lle r-stra igh ten ing  
leaves sign ifican t residual stresses w hich  affect the lifetim e 
o f  rail.

The rail is  subject to  large elastic-plastic deform ations 
y ielding com plex  stress states including bending, shear and 
ro ller contact com bined together. The load is alternating, and 
repetitive th o u g h  n o t periodic . It is app lied  by ro lls -  one can  
control am ount o f  load by  roll d isp lacem ent.

D ue to  aspects m en tioned  above increm ental analysis o f  
ro lle r-stra igh ten ing  process, even  i f  possib le , w ould  be a 
very  tim e and  m em ory  consum ing task. Therefore, an  
engineering  so lu tion  approach  w as p roposed  in  [1].

Scope o f  th is p a p e r is lim ited  to  a  part o f  th is approach —  
to  a  beam  m odeling  in o rder to  support, test and validate 
obtained results.

2. M e c h a n ic a l m o d e l

T horough evaluation  o f  residual stresses and curvature in 
a  ro lle r-s tra ig h ten ed  ra il p resen ts a com plex  prob lem  o f  n o n 
linear m echanics. A n  effec tive  engineering  solu tion  approach 
uses a special ID  beam  m odel in  o rder to  evaluate all roll 
con tact forces and  re levan t bending m om ents in  the rail as the 
basic inpu t da ta  fo r the  3D  rail shakedow n m odel [2] 
resulting in  a  sequence o f  2D  prob lem s corresponding to  the 
rail passing th rough  subsequent rolls.

B eam  m odel shou ld  accom m odate available initial data, 
and supply  in fo rm ation  on the bending m om ent, con tact force

and rail curvature over each roll in the straightening process. 
For the purpose o f  m odeling rail m ovem ent through  the rolls 
a lternate use o f  the  beam  and  shakedow n m odel is required. 
A fterw ards it is necessary  to  check  w hether sim plifications 
used  in m odel for speeding up assure satisfying, engineering  
solution accuracy.

3. S o lu tio n

A  p rogram  based on FD  m ethod  w h ich  a llow s fo r non
linear beam  analysis has been w ritten. It deals w ith  statically  
undeterm ined beams. M aterial is m odeled  by  e las tic -p las tic  
theory w ith  linear, kinem atic hardening. L oad cou ld  be 
defined as a  force o r displacem ent. T he beam  m ay be 
prelim inarily  deform ed. O btained solu tion  has been verified  
using  o ther available program s. H ow ever, such verification  
m ay be done only  fo r beam s w ith  rectangular c ross-sec tion .

C PU  tim e consum ption  is im portan t because beam  so lver 
should be used iterative ly  m any  tim es in  o rder to  ob ta in  a  full 
solution for w hole ro lle r-stra igh ten ing  process. M oreover 
exam ination o f  influence introduced by  including shear force 
effects an d  large deform ations is needed.

3.1. Influence o f  shear effect

Three program s have been used -  one o f  th em  based  on 
F D M  and  assum ptions show n above (in  deta ils  d iscussed  in
[3] and [4]) w hich  does no t support shearing; and fu rther two: 
A D IN A  and T im layxn, w hich  take  into consideration  
in fluence o f  shearing  deform ation. Several tes ts  h ave  been  
m ade: for a  beam  w ith  low  and h igh  c ross-sec tion , for a  
beam  w ith  d ifferent level o f  cro ss-sec tio n  p lastic ity , and  for 
beam s w ith  various distance betw een supports. L im it for 
spacing betw een  tw o supports fo r w h ich  tak ing  into 
consideration  influence o f  shear effect is necessary  has been 
found.

3.2. Influence o f  large deflections

I f  the relation  betw een bending m om ent and  curvature is 
know n in the elastic and in e lastic -p lastic  ranges, one  m ay 
solve the differential equation defin ing  beam  deflec tion  i.e.:

w’ = ~ x { M ) (1)

for sm all deflections,



(2)w’\ + {w'Y\i = -x{M)

fo r large ones.
T h e  m ain  ob jec tiv e  o f  th is te s t is to check  w hether u se  o f  

large deflection  th eo ry  sign ifican tly  changes results. This 
w ou ld  ju s tify  larger n u m b er o f  iterations required  to  obtain 
the  so lution.

4. F in a l  r e m a rk s

Program  w as tes ted  and  obtained solutions w ere 
successfu lly  v erified  w ith  resu lts p rov ided  b y  o ther solvers.

D ifference betw een  resu lts ob tained w hile taking into 
consideration  shearing  fo rce  and  neg lecting  it is significant 
fo r the  beam s w ith  leng th  to  heigh t ratios sm aller than could 
appear in  the ro lle r-s tra ig h ten in g  process.

T ests show ed  th a t th e  app lica tion  o f  large deflection 
theory , w h ich  is m o re  p rec ise , b u t also  dem anding m ore w ork 
is n o t ju s tif ie d  from  p o in t o f  v iew  o f  the  p recision  o f  final 
results.

E xam ined  w ere  a lso  effects o f  a  prelim inary  beam  
curvature.

F urther w ork  w ill be  focused  on taking into account 
initia l residual stresses, an d  m ovem ent o f  the rail.
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Summary

The paper presents the status o f  research and development o f  the advanced graphic modeler and visualization software cooperating 
with the unstructured 2D and 3D -mesh generator for meshless FD and FE methods. The project includes: 2D/3D mesh visualization 
and manual modification and simultaneous 3D problem solution visualization for realtime verification o f  calculation process. The 
presented approach is based on the OpenGL and its toolkits: GLUT, GLUI. Full conformation to these standards guarantees, that the 
whole program is platform independent. Various types o f graphic output, such as node and i t ’s interactive modification (node 
insertion, deletion and shifting), search for nodes in the neighborhood of a considered point, domain partition into sub-domains 
assigned to individual nodes, optimal mesh triangulation, the Voronoi diagram, optimal MFDM stars, and a choice o f charts 
presenting results o f computation, are provided by the system. The software works on-line providing instant visualization o f  
intermediate as well as final results.

Keywords: Visualization, OpenGL, Postprocessing, meshless FDM/FEM, adaptive mesh generator

A bstract

The paper presents the status o f  research and development 
o f  the advanced graphical m odeler and visualization software 
cooperating with the unstructured 2D and 3D-mesh 
generator [6]. The project includes: 2D/3D mesh visualization 
and manual modification and simultaneous 3D problem solution 
visualization for real-time verification o f  calculation process.

Numerous graphical modelers and visualization software 
are available (such as AutoCAD, OpenGl, 3DMax, LightWave, 
etc). However, many o f these programs have not been designed 
to deal with the adaptive multigrid approach, and thus do not 
allow for the instant visualization o f  computation progress as 
well as the mesh modification during computation.

The presented approach is based on OpenGL and its 
toolkits: GLUT, GLUI [3, 4], Full conformation to this standard 
along with pure C++ coding guarantee, that the whole program 
is platform independent.

The whole generation process starts with modeling the 
domain geometry. Given geometry o f the considered domain is 
used to prepare an initial, relatively coarse mesh, and to 
establish the base for the adaptation procedure. Since OpenGL 
does not provide means to describe or model complex 
geometric objects, users may apply CSG (Computational Solid 
Geometry) tools implemented in the system to define the 
domain. However, when the model is too complex, like for 
instance the railroad rail, another approach, based on the 
OpenGL tessellation procedure can be used. The procedure 
converts the object into convex polygons which are later 
extended for 3D visualization o f quadrilaterals.

In addition the system can coop erate, through adapters, with 
various commercial graphical designer packages (i.e. 
LightWave), which may be used to prepare the domain 
geometry. Such geometry may be easily imported into the 
system [5],

Various types o f graphical output, such as node and its 
interactive modification (node insertion, deletion and shifting), 
search for nodes in the neighborhood o f a considered point,

domain partition into sub-domains assigned to individual nodes, 
optimal mesh triangulation, the Voronoi diagram, optimal 
MFDM stars, and a choice o f  charts presenting results o f  
computation, are provided by the system. The software works 
on-line providing instant visualization o f  intermediate as well as 
final results.

Figure 1: 3D result visualization

The system is developed with elegant GUI design, based on 
GLUI, fully supports graphical preview, interactive mesh 
generation and modification, distributed calculations. The tool 
allows for complex interaction with the user.

It is also worth mentioning that the software being 
developed meets many modem computer-oriented requirements 
including: full compliance with many programming and 
algorithmic standards as UML design, XML and SOAP 
protocol.

This paper also describes plans for future project 
development including visualization and modification o f  3D 
mesh, migration o f  the software to the distributed environment.
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S u m m ary

The paper presents unified approach to discretization o f  boundary value problem s by  the FE and new ly developed M eshless FD  
(M FDM ) m ethods. Several possible com binations o f  the FE  and M FD m ethods are exam ined. A pplication o f  the approach in 
physically  nonlinear problem s are presented.

Keywords: Finite Element Method, Meshless Finite Difference Method, a  posteriori error estimation, adaptive methods

A b s tra c t

The w ork addresses the general topic o f  the Adaptive Finite 
E lem ent M ethod (AFEM ) and the new ly developed Adaptive 
M eshless F inite D ifference M ethod (AM FDM ) in order to 
autom atically enhance num erical solution in both methods and 
in a  com bined AFEM /A M FD M  technique.

F inite elem ent m ethod (FEM ) and meshless finite difference 
m ethod (M FDM ), were developed separately, and presented as 
com petitive to each other. Follow ing earlier Author papers on 
com binations o f  both the FE  and M FD m ethods [1,2] as well as 
recent adaptive approach in those methods [4], considered are 
here further developm ents o f  a  unified approach to these 
m ethods, especially w ith adaptivity taken into account.

Several possible com binations o f  the FE  and M FD  methods 
w ere exam ined. One o f  concepts o f  such unification is based on 
an attem pt to bring the M FD M  and the FEM  closer to each 
other. B oth m ethods m ay be oriented on evaluation o f  the vector 
Df=Q(x)£ o f  derivatives D f = { f  f j yf ^ f iyf x ...} as a

linear com bination o f  nodal unknow ns 8  and an 

approxim ation m atrix Q(x) . In the  M FDM , for a  given fixed 

point Xj o f  the domain, the m atrix Q presents meshless 

finite difference formulas. In the FEM  this matrix is formed 
using shape functions and their derivatives (local or consistent 
derivatives). Form ulation considered here is both general and 
convenient, because w hen supported by  the symbolic 
program m ing, provides an opportunity to apply fully automatic 
approach to analysis o f  any given functional o r differential 
equations; e.g. there is no need to m anually derive the FEM  
characteristics.

The o ther possible way o f  unification uses a  reverse approach. 
Thus, using m oving weighted least squares approxim ation the 
M FD M  form ulas are expressed in term s o f  the FEM  notation 
due to definition o f  appropriate pseudo shape functions 

f  — ^ . N j S j , used  later on in a  sim ilar w ay as in the FEM

analysis. Local (diffuse) and consistent derivatives [4,7] o f 
shape functions in  M FDM  are used in calculations at the same 
time.

M oreover a  com bination o f  both  m ethods m ay be  applied a t the 
sam e tim e. B oth  methods m ay be  used  either simultaneously 
though in different subdomains, o r in  a  sequence e.g. when the

MFDM postprocessing is applied to sm oothen rough results 
obtained by  the FEM  [1,2],

The other possible w ay uses the M FD M  approxim ation to 
construct a very effective class o f  a'posteriori error estimators in

the FEM  (like the  Z 2 indicators [5] and residual ones).

Present research, done in the dom ain o f  the adaptive techniques 
and error estim ation, includes:

•  developm ent o f  a  new  a'posteriori error estim ation 
techniques for elastic and non-elastic problem s in solid 
mechanics -  generally in  boundary value problem s given 
in the global (M FDM  and FEM ) formulation;

•  determ ination o f  the  optim al strategies for 'h' adaptive 
refinem ent, taking into account a ’priori error estim ates, i.e. 
theoretical features o f  the FEM  and M FDM ;

•  developm ent o f  adaptive m odelling to enhance solution 
accuracy using new  m ethodology w ith som e features o f  
physical m odels incorporated in the adaptive process, like 
degree o f  nonelastic deform ation. N ew  adaptive m esh 
generator for FEM /M FDM  com bined analysis is used.

Adaptive procedure in FEM  and M FD M  can be subdivided into 
the following parts:

1. Mesh control techniques:
(i) evaluation o f  a'posteriori error estimation:

•  Zienkiew icz-Zhu (Z-Z) estim ation technique [6] 
based on  stress recovery techniques ([1] and later on 
[6]) and superconvergent theory. Certain 
generalization is done here to extend the Z-Z 
estimators

•  interpolation type error estim ators (very easily to 
im plem ented in  m eshless methods),

•  estim ators based on truncation error o f  the Taylor 
series [5],

•  residual types o f  estim ators [5].
(ii) mesh refinement strategy taking into consideration: an

approxim ation error influence and influence o f  inelastic
deform ation growth degree [4],



2. Mesh refinement and/or enrichment. Regeneration o f  meshes
is dealt w ith here because o f  its com patibility w ith two 
different m ethods i.e. the FEM  and M FDM .

3. Mapping o f  history dependent variables from  the old to the 
new mesh.

4. Final postprocessing o f  solutions on fin e  meshes fo r  
additional enhancement o f  solution.

The m ost im portant m ethods o f  a'posteriori error analysis and 
several m esh refinem ent techniques are sum m arized in present 
paper.

The follow ing part o f  the paper presents the a'posteriori error 
estim ation first developed and used in  the FEM . The most 
frequently applied, Z ienkiew icz-Zhu [6] energy norm  estimator 
w ill be presented in a  detailed way. This estim ator is based on 
stress field postprocessing (sm oothing) technique and 
superconvergence theory o f  the FEM .

For estimators based on the superconvergence technique and 
the stress (or flux) recovery technique (Zienkiewicz,Zhu -ZZ) 
one has

(1)
n

w here o ‘ are stresses obtained by  the FEM .

The exact stresses a  are approxim ated by  the new stresses 

o ' obtained using the stress recovery procedure (the Meshless 
F in ite  D ifference m ethod is used here [1,2,4])

o ' = N o ’ (2)

w here o '  are nodal values obtained by  the M FDM  recovery 
procedure, and N  is a  shape functions’ matrix.
The exact solution for the strain energy is estim ated as

||C/|| =  [{ (o ‘) r D - '(o ‘W + | | e||! (3)
a

w here an error o f  the energy norm  is expressed as

| H I  =  [ J ( ° ' - « T D - ' ( o ' - o ‘ ) < « 2] "  ( 4 )
Cl

B oth ||e|| and ||C/j| norm s m ay be  evaluated as a sum o f  their 

respective elem ent contributions so that

ht=?w . iMr=tiMi: ©
w here n  denotes the total num ber o f  elements in the mesh. 
Estim ator (1) can be  use in M FD M  as well.

Estim ator (1) can be  generalized in  a  very easy way. One may 
use the M FD M  solution as a  reference one, a  . This approach 
is effective and reliable for low order FEM  elements and very 
prom ising in physically nonlinear situations, because estimator 
m ay be used at every stage o f  (nonlinear) calculation process.

Computer im plem entation o f  that FE/M FD  m odel is done in the 
form o f  a  system  called N A F D E M  - 'N onlinear Adaptive Finite 
Difference and E lem ent M ethods'. N A FD EM  is supported by 
JKJK [3] preprocessor providing an autom atic application o f  
symbolic operations like formal differentiation and generation 
o f  source code subroutines for stiffness matrices. Consequently, 
the user has only to define a form  o f  the functional o r the virtual 
work principle applied, to specify boundary conditions, and to 
describe the dom ain o f  the problem  considered.

Numerical solutions o f  various boundary value problem s, 
especially using elasto-plastic and elasto-visco-plastic models, 
illustrate the presented approach. Stress fields in railroad rails 
and wheels are analyzed as exam ples o f  true technical 
applications o f  the approach. Com parative study o f  influence o f  
the different types o f  derivatives (local and consistent) on 
results is presented.
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S u m m ary
The paper presents developm ent o f  m oving weighted least squares (MW LS) approxim ation applied to the adaptive m eshless finite 
difference m ethod (M FDM ). Several possible definitions o f  derivatives (local and consistent) are used, their quality is com pared and 
application to solution o f  b.v. problem  dem onstrated
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A b s tra c t

The w ork addresses the general topic o f  the newly 
developed Adaptive M eshless Finite D ifference M ethod 
(AM FDM ), applied to autom atically enhance numerical 
solution.

Follow ing earlier A uthors’ papers on M FD methods 
[1,2] as well as recent adaptive approach in those methods [4,5], 
considered are here further developm ents o f  an comparative 
approach to these methods, especially w ith adaptivity taken into 
account.

Two possible definitions o f  derivatives i.e. local and 
consistent w ere examined. B oth methods m ay be oriented on 
evaluation o f  the full vector Df = Q(x)<5 o f  derivatives

D f  =  { /  f x  f y  f x x f x y f y y - )  as a  linear com bination o f  

nodal unknow ns 8  and an approxim ation matrix Q(x) . In 

the M FDM , for a  given fixed point Xi o f  the domain, the 

m atrix Q presents meshless finite difference formulas. 
Form ulation considered here is both general and convenient. It 
is supported by the sym bolic program m ing providing an 
opportunity to apply fully autom atic approach to analysis o f  any 
given functional o r differential equations; e.g. there is no need 
to m anually derive the M FD M  characteristics.

The other possible w ay o f  approxim ation m ay be also 
used. U sing moving w eighted least squares approxim ation the 
M FD M  formulas are expressed in terms o f  the FEM  notation 
due to definition o f  appropriate pseudo shape functions 

f  =  , and used la ter on in a  sim ilar w ay as in the

FEM  analysis. Local (diffuse) and consistent derivatives [4,7,8] 
o f  shape functions in  M FD M  are used  in calculations at the 
same time.

Present research, done in the dom ain o f  the adaptive 
techniques and error estim ation, includes: •

•  application o f  a new  a'posteriori error estimation 
techniques, based on sim ultaneous use o f  local and 
consistent M FD M  derivatives, for elastic and non-elastic 
problem s in solid m echanics -  generally in  boundary value 
problem s given in the global M FD M  formulation,

•  determination o f  the optim al strategies for 'h' adaptive 
refinement, taking into account a ’priori error estim ates, i.e. 
theoretical features o f  the M FD M  solution;

•  application o f  a  new  adaptive m esh generator for M FD M  
analysis,

•  application o f  new  M FD M  approach to  solve class o f  
boundary value problem s in mechanics.

Adaptive procedure in  M FD M  can be subdivided into the 
following parts:

1. Mesh control techniques:
(i) evaluation o f  a'posteriori error estimation:

•  Z ienkiew icz-Zhu (Z-Z) estim ation technique [6] 
based on  stress recovery techniques ([1] and later on 
[6]) and superconvergent theory. Certain 
generalization is perform ed here to extend Z-Z  
estim ators for M FD M  analysis,

•  interpolation type o f  error estim ators (easily 
im plem ented in m eshless methods).

(ii) mesh refinement strategy taking into consideration: 
influence o f  an  approxim ation error and influence o f  
inelastic deform ation growth degree [4],

2. Mesh refinement and/or enrichment. Regeneration o f  meshes
is dealt w ith here.

3. Mapping o f  history dependent variables from  the old to the 
new mesh.

4. Final postprocessing o f  solutions on fin e  meshes fo r  
additional enhancement o f  solution.

The following part o f  the paper presents the a'posteriori error 
estimation first developed and used in  the FEM . The m ost 
frequently applied Z ienkiew icz-Zhu [6] energy norm  estim ator 
will be presented in a detailed way. W idely know n Zienkiew icz 
- Zhu (Z-Z) estim ator is based on stress field postprocessing 
(smoothing) technique and superconvergence theory o f  the 
FEM.

For estimators based on the superconvergence technique and  
the stress (or flux) recovery technique (Zienkiewicz,Zhu -ZZ) 
one has
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|HI = [J(°-®‘)rD-‘(<T-o‘) ^ ,  (1)
n

where o* are stresses obtained by the FEM.

The exact stresses o  are approxim ated by  the new  stresses 

o ' obtained using the stress recovery procedure (the Meshless 
F inite Difference m ethod is used here [1,2,4])

o ' =  N o ' (2)

w here o '  are nodal values obtained by the M FDM  recovery 
procedure, and N  is a  shape functions’ matrix.
The exact solution for the strain  energy is estim ated as

M H  J ( o T  D~‘(o ‘y £ i p  +||ej|2 (3)
n

w here an error o f  the energy norm  is expressed as 

H  =  [ | ( o '  ~ o ,,) r D~‘(o ' - o ‘) d n p  (4)
n

B oth ||e|| and ||(/|| norm s m ay be evaluated as a sum  o f  their 

respective elem ent contributions so that

H*=£W. IW =|M  ©

w here n  denotes the total num ber o f  elements in the mesh.

Estim ator presented above can be generalized and extended to 
M FDM .

Let us define the follow ing problem :

•  data, (not necessarily stresses like in  eq. ( 1 ) )  coming from 
M FD M  calculations, located at certain points - set #1 (set 
o f  prim ary points) is given.

•  data, (not necessarily stresses like in eq. (1) ) coming from 
M FD M  results projected onto linear subspace (for example 
by  using linear or bilinear FEM  shape functions), located at 
sam e points - set #2 is given .

The problem  is exactly the sam e as in error estim ator (1), but 
now  one has one set o f  poin ts w ith  two different data sets: 
M FD M  approxim ation and projected M FDM  results.

I H -VrnJd&Y , (6)ft

w here a rl0J is value obtained b y  projection o f  M FDM  solution 

onto linear subspace. A pproach is superior to usual Z-Z 
estim ator because FEM  superconvergence values exist in very 
special cases i.e. regular meshes m ay be  used only.

The behavior o f  the present M FD M  formulation, as well as 
error estim ator were studied in  the cantilever beam  problem  -  
for different length and height on the beam  and for different 
meshes. O btained a  posteriori error estim ation was very close to 
exact one in every studied exam ple. This approach is effective

and reliable, m ay be  used in FEM  and is very prom ising in 
physically nonlinear situations.

Com puter im plem entation o f  that M FD  m odel is done 
in the system  called N A F D E M  - 'N onlinear A daptive F inite 
Difference and E lem ent M ethods'. N A FD EM  is supported by 
JKJK [3] preprocessor providing an autom atic application o f  
symbolic operations like formal differentiation and generation 
o f  source code subroutines for stiffness matrices. Consequently, 
the user has only to define a  form  o f  the functional or the virtual 
work principle applied, to specify boundary conditions, and to 
describe the dom ain o f  the problem  considered.

N um erical solutions o f  various boundary value 
problems illustrate the presented approach. E lastic stress fields 
in railroad rails and w heels are analyzed as exam ples o f  true 
technical applications o f  the approach. Com parative study o f  
influence o f  the different types o f  derivatives on results is 
presented. N ew  features o f  both  local and consistent derivatives 
are observed, w hich m ay indicate, how  to build  M FD M  model, 
to obtain high precision results in the m ost econom ical way.
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Summary

The work addresses extended formulation o f  a new approach proposed to measurements planning by means o f  error 
control o f  experimental data. It includes: development ofpostprocessing techniques fo r  approximation o f  data given in a discrete 

form, a'posteriori error estimation (evaluation) o f  measured data, estimation o f  a new required experimental points location and  
density, definition o f  reliability index o f  experimental data. On the base o f  a ’posteriori error analysis o f  data, adaptive procedure o f  
experimental data collection and evaluation is presented, fo r  the firs t time.

Theoretical consideration and numerical analysis are based on the Adaptive Finite element Analysis (AFEM) and the 
Meshless Finite Difference (MFDM) approach. Differences in numerical and experimental data analysis are underlying.

Keywords: Experimental data approximation, error control, meshless FDM

A b s tra c t

The w ork addresses developm ent o f  a  new  approach to 
approxim ation, sm oothing and error estim ation technique o f 
experim ental/num erical data. O n the base o f  a ’posteriori error 
analysis o f  data, adaptive procedure o f  experimental data 
collection and evaluation is presented, for the first time. It 
includes: developm ent o f  postprocessing techniques to
approxim ate data given in discrete form, developm ent o f  an 
iterative approach to additional enhancement o f  data at new 
(required in com puter procedures) locations, a'posteriori 
technique to trace loss o f  accuracy in original data, estimation 
o f  the new  grid points density  taking into account equal 
distribution o f  the error (w ith different error norms). The paper 
includes application o f  above m entioned procedure in wheel 
stress recovery calculations and in residual stress analysis in 
FEM /M FDM .

A 'posteriori error procedure in Zienkiewicz-Zhu [2] 
estim ator can be split into tw o stages: stage 1: calculation o f  
stresses (or o ther prim ary values) at Gaussian points- the 
prim ary set o f  points; stage 2: approxim ation o f  the Gaussian- 
located stresses to  nodes, back retrieval o f  the nodal values to 
Gauss points using (for exam ple) standard shape functions or 
other kind  o f  approxim ation. H aving two sets o f  values differing 
in accuracy at the same points, one m ay calculate global (sum 
over w hole dom ain) and local (assigned to a  single point) (1),
(2) norms.

Let us define the follow ing problem : data (not necessarily 
stresses) com ing from  experim ent o r from numerical 
FEM /FD M  analysis, located a t som e points - set #1 and the 
fictitious sets o f  points used la ter in calculation - set #2 are 
given. The problem  lies in data translation from  #1 points set to 
#2 points set. The problem  is the sam e as in Z-Z  [2] error 
estim ation, bu t now  one deals w ith tw o different sets o f  points 
w ith arbitrary, no t elemental, locations and has no information 
on regularity, sm oothness and reliability  o f  the data. Total norm

o f  the m easured values and the error norm  betw een two surfaces 
defined by data #1 and recovered #2 a t experim ental poin ts m ay 
be defined as [4]

IMF = + (V n‘) r (V u‘) +  (u ‘) V ] r i Q , (1)

||e|| =  [ J(e« + eV u + eKu)dQ.y (2)
D

where

eu = (u' - u ‘ ) r (» ' - « * ) ,

eVu  = (V m'  -  V «‘) r (V « ' -  V «‘) ,

etcu = (ku -  tathY (ku -  iaih)

where «* is vector o f  experim ental data (in experim ental 

points), u is vector o f  fictitious data sought, K - is 
generalized K arm ow ski curvature.

To solve th is problem , data from  experim ental points is 
approximated to fictitious ones, using  M oving W eighted Least 
Suqares approxim ation [1] (M W LS), and later on, taking values 
at fictitious points as original data, approxim ated back from  
fictitious points to experim ental ones. In  this two-stage 
approximation part o f  data is lost, bu t i f  differences betw een 
original data in  the experim ental points and fictitious data in  the 
same points are small enough, one m ay expect that the 
approximation in first step does no t introduce too large error. A s 
will be seen from  num erical analysis this assum ption is true. 
Additionally, in the zones w here the gradients o f  approxim ated 
function are larger, the error m agnitude (differences) has 
considerably greater value as com pared with the zones w ith 
smaller data gradients. M oreover, i f  irregularity in  data is large 
the error increases. Those facts m ay be  used, as byproduct 
important inform ation, to evaluate experim ental data. H aving
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vector o f  differences betw een experim ental and fictitious values 
a t experim ental points one can "smear" error, approximating 
vector o f  differences from  experim ental to fictitious points. 
A dding correction to initial fictitious values one can obtain new 
enhanced fictitious values. This process can be repeated.

The key question is, w hether one can evaluate experimental 
data using norm s (1) and (2) ? The answer is yes, i f  data is 
regular enough. As one can see from  equations (1) and (2), 
values o f  a function m easured, gradients and curvatures o f  the 
function are taken into account.

The a'posteriori error analysis described above has been 
applied to the wheel saw  cut data [3] analysis, using 
approxim ation im plem ented in M W LS, approxim ation and 
evaluation o f  the residual stress analysis results coming from 
shakedown approach and a'posteriori error estimation in 
plasticity. Advantages o f  the error analysis w ere shown.

As a  practical result o f  introduced error analysis, new 
adaptive procedure o f  experim ents planning is possible. 
Experim ental method should take into account character o f  the 
m easured function, it cannot be  separated from  character o f  
m easured physical field. Sim ply speaking, in regions where 
gradients o f  m easured field are larger, one requires m any more 
experim ental points. P resented approach gives a  theoretical 
foundation for above m entioned crucial condition in 
experim ental mechanics. One m ay distinguish two different 
situations: (1)- it is possible to  simulate behavior o f  measured 
elem ent o r part o f  structure by  m eans o f  numerical method 
(FEM , meshless FDM ), (2)- it is not possible to simulate 
experim ent numerically.

A n experim ent m ay be repeated o r not, i f  yes, sometimes 
one has the chance to correct location o f  experimental points. I f  
not, presented approach defines tools for proper data evaluation 
and f ilte r in g .

The follow ing procedure is proposed, when numerical 
sim ulation o f  experim ent is possible:
1. Solve problem  num erically, w ith conditions for proper 

sim ulation o f  m easured part o f  a structure o r an element as 
good as possible.

2. Evaluate a’posteriori error and repeat calculation with new 
m esh (grid) density, to statisfy equidistribution or 
equivalent error requirements.

3. D efine experim ental grid and project numerical solution 
(by m eans o f  M W LS approxim ation) to this grid. Try to 
recover original solution from experim ental grid using 
experim ental grid as a prim ary grid  and numerical grid as a 
secondary grid. Evaluate a ’posteriori error and new 
experim ental grid density function w hich takes into 
account equidistribution o f  an error.

4. I f  is it possible, change experim ental point locations, repeat 
experim ent and evaluate a’posteriori error distribution 
(now  real error).

5. Evaluate m easured data using estim ated error (or new 
required experimental grid density) as a reliability index to 
decide w hich data have to be rem oved or taken with 
lowered weight.

If  m eshless m ethod is used in the  above m entioned 
procedure, num erical sim ulation o f  the experim ent is specially 
easy, because one m ay directly use experim ental grid as 
numerical one, w ithout any transform ations and additional 
(approximation) errors.
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Abstract

M eshless m ethods (M M ) use  a  local approximation based on nodes rather than on elements, and therefore, they  use unstructured 
grids. They constitue now adays m ore and m ore powerful tool o f  computational analysis o f  various engineering problem s successfully 
com peting w ith the classic FEM . A  review  and classification o f  m ain contem porary meshless methods is presented. It is follow ed by 
a discussion o f  the m oving w eighted least squares (MWLS) approximation including problem  o f  weights, evaluation o f  function 
derivatives. D iscussed are also selected applications o f  the MM , and their recent and further development.

Keywords: meshless methods, local approximation

M eshless m ethods (M M ) have become a  powerful 
alternative to the FEM . In recent years the development and 
application o f  discrete approaches to an analysis o f  boundary- 
value problem s, based on nodes rather than on elements, and 
therefore using unstructured grids have emerged. Generally 
these m ethods are referred to  as m eshless methods (MM), 
though a  variety o f  different specific nam es is used as proposed 
by  their authors (cf. review  papers [2,12], and monographs 
[1,19]). Q uite often the sam e m ethod has various names and 
“rediscoveries” are being  m ade. A  classification o f  these 
m ethods follow s as proposed b y  the author based on the type o f  
a local approxim ation used. A ll o f  these methods yield an 

approxim ation o f  the form  u h =  N q , N  =  [ / v j ,  q  =  {w,} 

(well known from  the FEM ). The m ethods differ from  each 

other by the w ay the "p seu d o  shape functions" AT are 

obtained and by the specific form  o f  these functions. However, 

the condition JV) =  1 , (called partition o f  unity) always has
t

to be  satisfied. Thus one m ay distinguish:

(i) Methods based on the weighted least squares (MWLS)
local approximation

The follow ing m ethods m ay be  included into this group:
-  m eshless finite difference (M FDM ); it is being 

developed since 1972 and m ay be  regarded as the oldest, 
as w ell as possibly; the  m ost general approach (both 
local [13] and global [10,14]) to the problem  [19],

-  diffuse elem ent m ethod (DEM ) [6,17]. Though the 
concept o f  this m ethod proposed in  1992 was not new 
w hen com pared w ith  the M FD M  and MWLS 
approxim ation developm ent a t that tim e [10,11,13], the 
paper [17] accom plished an im portant ro le as a trigger o f  
w ide research on the m eshless m ethods [3,4,7,14,17],

-  elem ent free G alerkin (EFG). Following the DEM 
concept very intensive research has been undertaken by 
T .Belytschko and h is num erous coworkers (cf. review 
paper [2] and [4]) m ainly using the Galerkin formulation 
o f  boundary value problem s. The classical MWLS 
approach is used  w ith polynom ial interpolants to derive 

the local pseudo-functions N , and their derivatives. 

The asym ptotic solutions and/or jum p functions may 
enrich the local approxim ation bases when needed.

Successful analysis, especially o f  com plex fracture 
m echanics problem s was done,

-  finite point (FPM ) [18] and finite volum e (FV M ). These 
m ethods proposed by  S.Idelsohn, E .O nate, R .L.Taylor 
and O.C.Zienkiewicz use som e basic concepts o f  the 
finite difference method. Advantage is also taken o f  the 
M W LS approxim ation (FPM ) and V oronoi tessalation 
o f  the dom ain used for integration purposes (FVM). 
Large fluid m echanics problem s w ere effectively 
analysed [18].

-  Local boundary integral equation (LBIE) and m eshless 
local Petrov-Galerkin (M PLG), as well as local 
quadrature concept are used as proposed by  A tluri el al 
[1]. Various types o f  local approxim ation m ay be  
applied then including the MW LS.

(ii) Kernel methods

These methods are based on an interpolation using the 
kernel estim ate o f  the function w (x) defined on a 

dom ain D. A ssum ing the w eight function w as the 
kernel one m ay obtain the required pseudo shape 

functions N f x )  . The follow ing particular m ethods are 

considered:
-  sm ooth particle hydrodynam ic (SPH).

This is the second oldest M M  initiated by  L .B .Lucy 
[16], and initially developed by  J.J.M onaghan. In  the 
discrete form  this m ethod is not consistent i.e. the lowest 
order polynom ials are n o t reproduced. This draw back is 
elim inated by  the im proved SPH version:

-  reproducing kernel particle m ethod (RKPM ), 
introduced by  W .K .Liu w ith coworkers [15] and 
intensively developed in a  series o f  papers [12].

(iii) Partition o f  unity methods PU M

These m ethods are based on the general concept 

1 =  y  jV. called partition o f  unity. O nce such partition

is executed in the above equality it m ay be  m ultiplied by  
any function \jf as to generate new  "sh ap e  functions"

yrN. and/or to perform  o ther operations, e.g. 

differentiation. The function y/ m ay represent, e.g. a 

complete basis o f  m onom ials and/or asym ptotic solutions
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etc. Two basic approaches w ere used in the PUM, 

differing in the w ay the basic shape-functions N , are 

defined and introduced:
-  partition o f  unity  finite elem ent m ethod (PUFEM).

This approach is due to I.Babuska and M elenk [3]. They 

used the classical FEM  to generate shape functions AT .

-  hp-clouds method,
A .D uarte and J.T .O den [7] proposed the use o f  the 

M W LS to generate the  pseudo shape functions N t . In 

fact, the sim plest Sheppard m ethod is applied and TV. 

are defined by  explicit form ulas (cf.[7,19]). M oreover 
the  h-p  adaptive approach was successfully introduced. 
A lso a  com bination o f  hp-clouds and M FDM  has been 
considered.

(iv) Particle in cell methods (PIC)

These m ethods [5,12] are based on m olecular dynamics, 
and, therefore they are applied, first o f  all, to time 
dependent problem s. T he continuous body is partitioned 
into subdomains. T heir m asses are reduced to particles 
located in their centres o f  gravity. The body m otion is 
described then as a  m otion o f  a  cloud o f  particles 
follow ing the principles o f  m echanics. Effective, valuable 
results w ere obtained using  this method despite several 
lim itations and draw backs resulting from  its simplicity.

(v) Natural element methods (NEM)

N atural elements or natural neighbor methods [20] are 
based on the so-called Sibson coordinates to constract its 
interpolation function. It is used, like well known 
triangular coordinates in  the FEM , to generate the 
required pseudo shape functions in the NEM . Also a  non- 
Sibsonian interpolation schem e is being used.

(vi) Other meshless methods (MM)

The m eshless m ethods are in  a  state o f  rapid development 
[1,2,8,12,19], Although, in fact, som e o f  them  were discovered 
quite some tim e ago (M FD M  - 31 years, SHP- 26 years), and it 
is only recently  that they  have captured the interests o f  a 
broader group o f  researchers. There are many aspects o f  these 
m ethods w hich could benefit from  im provements like the 
techniques for treating discontinuities and other local effects 
(e.g. singularities). M eshless m ethods (like wavelets) are 
m anifestations o f  the sam e basic trend towards methods with 
localized approxim ations (e.g. M W LS). Although they already 
form  a separate group o f  discrete m ethods, some o f  them  still 
require further im provement. O n the other hand, the current 
developm ent o f  the M FD M  and the potential pow er o f  the PUM  
are already very prom ising. M oreover, ease o f  the use o f  
distributed and parallel com puting as well as symbolic 
operations w hich the m eshless m ethods display, contributes to 
a breakthrough in their effective application.

Presented w ill be  here a review  o f  the main M M  concepts, 
discussion o f  som e chosen problem s o f  the MW LS based 
approxim ation including choice o f  weights, evaluation o f  
derivatives, error analysis, and M M /FEM  coupling [9,10], 
Several exam ples o f  M M  applications, as well as their recent 
trends, and expected directions o f  further development will 
follow.
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Sum m ary

The paper p resen ts th e  curren t sta tus o f  research  and developm ent on the effective unstructu red  2D  and  3D -m esh generato r fulfilling 
requ irem ents o f  h igh ly  effic ien t adap tive analysis and m ultigrid  solution approach. T he approach  is based  on  th e  advanced concept o f  
m esh  density  contro l, w hich  allow s fo r effective and  flexible m esh m odification  m echanism  to  insert, rem ove and shift nodes. The 
research  com prises: node generation  and  m odifica tion  (node insertion, rem oval and  shifting), search  fo r nodes in  the neighborhood o f  
a considered  p o in t (node), dom ain  partition  into subdom ains assigned to individual nodes, optim al m esh  triangula tion , optim al star 
generation  and  classification, au tom atic detection  and  elim ination  o f  singular o r ill-conditioned  FD  schem es. Full m esh  topo logy  
in form ation  is generated  and prov ided  i f  requ ired  by  a user.

Keywords: FDM/FEM, mesh generator, mesh density control, adaptive analysis

1. A b s tra c t

The paper p resen ts the curren t sta tus o f  research  and 
developm ent on  the effective u nstructu red  2D  and 3D -m esh 
generator fu lfilling  requirem ents o f  h igh ly  effic ien t adaptive 
analysis and m ultigrid  so lu tion  approach [6, 7]. The approach is 
based  on  the advanced concep t o f  m esh  density  control [7], 
w h ich  allow s for effective and  flex ib le  m esh  m odification  
m echanism  to  insert, rem ove and  shift nodes.

The research  com prises: node genera tion  and  m odification  
(node insertion , rem oval and shifting), search  fo r nodes in  the 
neighborhood  o f  a  considered  p o in t (node), dom ain  partition  
in to  subdom ains assigned to  indiv idual nodes, optim al m esh 
triangula tion , optim al star genera tion  and classification, 
au tom atic detection  and  e lim ination  o f  singular or ill- 
conditioned  FD  schem es. Full m esh  topo logy  inform ation  is 
generated  and prov ided  i f  requ ired  by  a  user.

The m ain effort is no w  focused on  th e  2D  m esh generator 
being  curren tly  im plem ented. This includes generation  o f  series 
o f  m eshes w ith  corresponding p rox im ity  inform ation. The 
resu lts are v isualized  w ith  the  cooperating  softw are p repared  in 
[1]. T his paper a lso  p resen ts several benchm arks and 
applications related  to railroad  rail analysis.

The w ork  on extension  to  3D  is  in  p rogress but m ainly  in 
concep tual and  theoretical phase. T he strategy  o f  3D  m esh 
adap ta tion  is now  defined and  several a lgorithm s have been 
drafted.

The presented  concept is designed  to  w ork  properly  w ith 
bo th  th e  adaptive m eshless fin ite  difference (M FD ) and FE 
m ethods [3]. The generator p roduces various types o f  output 
data. T hese include in form ation  on  series o f  m eshes generated 
during  adaptive refinem ent process. E ach  m esh contains 
topolog ical inform ation on M FD M  stars and  sim plex  elem ents 
(fo r the FE  and  BE m ethods).

The m esh generation  a lgorithm  is d iv ided  in to  tw o parts. 
The first one deals w ith  node generation  and  m odification, 
w h ich  is based on L iszka’s concep t [2], la ter developed for the 
adap tive so lu tion  approach by J O rk isz [5]. The new  concept

presented  in the p aper is a unique com bination  o f  L iszka’s type 
m esh generation  and  an  advanced gram m ar based approach. A  
com bined algorithm  is p roposed  to  guarantee generation  o f  
w ell-conditioned F D  schem es.

The second p art o f  the  a lgorithm  m anages generation  o f  
proxim ity  [8] in form ation  (V oronoi thessalation; constrained  
D elaunay triangula tion ; selection o f  node and triangle  
neighbors; evaluation  o f  m esh  density) and selection  o f  various 
types o f  M FD  stars.

The process o f  n ode generation  resem bles ‘sifting n o d es’ 
out o f  a  very  dense reg u la r m esh  th rough  the filter represented  
by im posed local m esh  density  function. T his function  m ay  be 
defined by the u se r o r is a  resu lt o f  a ’posterio ri erro r analysis. 
P roper defin ition  and  m odifica tion  o f  th is function  is a key  
m echanism  for an  effective m esh density  control.

There are several un ique features o f  the  th is k ind  o f  
approach to  m esh generation , w hich  are  fundam ental fo r proper 
im plem entation o f  adaptive m ultigrid  so lu tion  approach:

•  Effective generation  o f  an initial m esh that corresponds to 
m inim al m esh density  requ ired  by  th e  analyzed b.v. 
p roblem  w ith  ab ility  for further adaptive refinem ent.

•  F lexible m esh  m odifica tion  by new  nodes, insertion , 
rem oval o r sh ifting  o f  existing  ones as a  consequence o f  a 
full m esh  density  contro l capability.

•  Easy generation  o f  sm ooth  transition  zones betw een areas 
o f  different local m esh  density.

It is also w orth  m ention ing  that the w hole softw are has been 
designed and  developed  using  m odem  m ethodology includ ing  
U M L, m ulti-tier and  d istributed  approach  supposed to  extend 
the size o f  possib le  tasks analyzed [2], Several applications in  
residual stress analysis in  ra ilroad  rails are discussed.
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Summary

A  relaxation technique applied to speed up the well established Gauss-Seidel iterative m ethod is considered here. A s m any  other 
iterative solution m ethods the G auss-Seidel method may be used together with the successive over-relaxation technique (SOR). In the 

classical SO R approach the optim al relaxation param eter X is to be  chosen to  m inim ize the spectral radius o f  an error dum ping 

m atrix M (X ) . H ow ever, the evaluation o f  such optimal param eter X is difficult except in the sim plest o f  cases. It is usually  

obtained only approxim ately, based  on trying various values o f  X  and observing the effect on the speed o f  convergence. Therefore, 
a  new  w ay o f  evaluation o f  the relaxation factor for the Gauss-Seidel method is considered here. Proposed is either m inim ization or 
annihilation o f  a  m odified subsequent value o f  solution residuum. A s opposed to  the spectral radius p s (M (A )) m inim ization 

technique the above m entioned concept requires only simple calculations to evaluate a  new  Xm in each iteration step. The results o f  

prelim inary num erical tests done, are encouraging. Further tests are planned.

Keywords: large simultaneous equations, relaxation approach

1. In tro d u c tio n

Though effective analysis o f  large sets o f  simultaneous 
linear algebraic equations (SLAE) A x =  b  is a  very old 
problem , it is very often required in a  variety o f  technical 
applications, and still presents an active research field.

A  relaxation technique applied to speed up the well 
established Gauss-Seidel iterative method is considered here. As 
m any other iterative solution m ethods the Gauss-Seidel method 
m ay be brought to  the form

= M x (m-I> + N b  > Q )

when the successive over-relaxation technique (SOR) is 
sim ultaneously applied  in o rder to obtain an improved solution

where solution increm ent =  x tra) -  x (m_1) denotes at the

same tim e the residuum .

The m atrices M  and N  depend on the relaxation parameter 
X . In  the classical SO R approach this param eter is to be chosen 
to m inim ize the spectral radius p s (M(X)) o f  the matrix 

M ( / l ) , in order to m ake x(m) converge to x as rapidly as 
possible [1,2]. H ow ever, the  evaluation o f  such optimal 

param eter X is difficult except in the simplest o f  cases. It is 
usually  obtained only approxim ately, based on trying various 
values o f  X and observing the effect on the speed o f  
convergence. I t is also w orth m entioning here, that even the 

optim al value X , defined above, does not guarantee obtaining 
the m inim um  num ber o f  G auss-Seidel iterations.

Therefore, a  new  w ay o f  evaluation o f  the relaxation factor 
for the G auss-Seidel m ethod is considered here. Proposed is

either m inim ization o r annihilation o f  a  m odified  subsequent 
value o f  the residuum

~(m-l) _ r(m-2) ( r(m-l) _ r(m-2)) (3 )

in  order to determ ine Xm .
As opposed to the spectral radius / t, (M ( /1)) m inim ization 

technique the above m entioned concept requires only sim ple 
calculations to evaluate a new  Xm in each iteration step. 

Several particular local and global concepts have been used to 
evaluate variable relaxation factor Xm . Its influence on the 

convergence rate o f  the iterative solution process o f  large set o f  
simultaneous linear algebraic equations has been investigated. 
Encouraging results have been obtained.

2. Solution a p p ro a c h  p ro p o sed

Consider simultaneous linear algebraic equations (SLAE)

n
'Y ja,jx j = bi . f =  l ,2 , - ,«  (4)
i=l

or in the m atrix notation

Ax =  b , (5)

where A =  [a,y], x =  {*,}, b  =  {i,}  for i , j  = 1,2.....n .

Solution o f  the SLAE is usually obtained by  m eans o f  either 
elim ination m ethods o r iterative ones. The iterative m ethods are 
m ostly used to solve large sparse systems.

Besides being large the linear system s in  question often 
have other im portant features e.g. they are usually  sparse. A  
successive over-relaxation iterative (SO R) technique applied to 
solution o f  systems o f  such equations is investigated here. The 
Gauss-Seidel m ethod is one o f  often used  iterative solution

mailto:plorkisz@cyf-kr.edu.pl


m ethods. It presents a  well known and established iterative 
procedure

,(«+i). ,(m) (6)

where each new  com ponent x J(m+1) is immediately used in the 

com putation o f  the next com ponent x-"]+l>. The method is 

convenient in practical calculations due to its simplicity and 
m inim ized storage requirem ents. On the other hand it is not 
efficient enough, especially  for large systems o f  equations.

Therefore, it is often used  together with an acceleration 
technique called successive over relaxation approach (SOR). An 
acceleration param eter X and the following modification o f  
formulae (6) are introduced then:

(7)
aii [ y=l H +1 J

Xzjm+l)+(  1 - X ) x j m) , t =  !,...,« (8)

for m>  0 . The case X = 1 presents the regular Gauss-Seidel 
m ethod. Theoretical considerations show that 0 < X < 2 [1,2].

The param eter X  is to be chosen as to minimize the 
spectral radius p s (M (/l)) o f  the m atrix M ( X ) , given in 

relation (1), in order to  m ake x(m) converge to x as rapidly as 
possible. Thus required is the optimal value o f  the parameter 

X m inim izing the extrem e eigen-value o f  that matrix.

Several rem arks should be m ade here. The value X , found 
in this way, presents an  optim al choice from the point o f  view 
o f  each single iteration step. However, optimization o f  not only 
one but a  series o f  steps a t once, like the Tschebyshev 
acceleration in the R ichardson m ethod [3], may yield a faster 
solution procedure.

U nfortunately evaluation o f  the optimal X , mentioned 
above, is practically  difficult, except in the simplest cases. 
Therefore, it has been usually  obtained only approximately so 
far, based on  try ing  several values o f  X and examining the 
effect on the speed o f  convergence. It is worth noticing, 
however, that w ith a  proper choice o f  X such effect m ay be 
dramatic.

Therefore, a  new  approach to providing an effective 

evaluation o f  variable param eter Xm, appropriate for m series 

o f  the Gauss-Seidel iterations carried out for given n 
consecutive equations is proposed here. This approach is based 
on a m inim ization o f  the residuum

jr(m-i) = r (m-2) + 4 B_1(r<'"-1> - r (m-2>) (9)

where

r (m-l) x (m) _ x (m-l) (10)

M ultiplying equation (9) either by the vector 

( r(” - i) ) ' _ ( r (m-2)) ‘ o r by  (r (m_2)) ' and assuming that

is orthogonal to  the first or to the second o f  those 
vectors one obtains

j-~(m-l)y ̂ .(m-1) _ r(m~2) j_ ̂ (m-2)y ̂ .(m-1) _ r(m-2) j+

+  Ara. i ( r ("’- I> - r <'"-2> ) '(r <m- 1> _ r < "-2 )) = 0

hence

r̂ (m-2)y ^.(m-1) _ r (m-2)^

(1 1 )

(12)

or

^~ (m -l)y  r (m-2) _ ^ r (m -2)y r (m-2) +

+  ̂ m -i(r<m’2>) ’ (r<m_1) - r (" - 2)) = 0  (13)

hence

r̂(ra-2)y r(m-2)
= ~ r (*-2> (r 0»-b _ r (m-2) j

As opposed to the classic spectral radius p s (M (/t)) 

m inim ization technique m entioned before, the proposed concept 
requires only sim ple calculations to evaluate a  new  X after 
each o f  tw o consecutive series o f  the G auss-Seidel iterations 
perform ed for the w hole system  o f  n g iven equations.

The follow ing solution algorithm  is proposed here:
(i) perform  two consecutive series (m -1 and m -th) o f  gauss- 

Seidel iterations (6) for the w hole system  o f  n SLAE 
equations

(ii) after the second o f  these series find residuals (10) and 
SO R param eter Xm (12) o r (14),

(iii) find new  SOR m -th solution (8) to the SLAE and 
replace w ith it the last m-th G auss-Seidel solution 
found before.

3. N um erica l tests

The approach proposed here has been tested in various 
ways.

Comparisons w ere m ade betw een the classic G auss-Seidel 
and the new  SO R algorithm  technique proposed here. The 
influence the num ber o f  SLAE and the required  precision o f  
calculations s  ( em < e  ) have on the convergence rate have 

been examined.
The prelim inary results are encouraging. The speed up 

factor betw een SO R and Gauss-Seidel algorithm s as m easured 
by the num ber o f  iterations was found betw een 2 and 20, though 
the gain was falling w ith the increasing SLAE num ber. 
However, m any further tests are necessary before a  reasonable 
conclusions m ay be m ade. These tests will also include several 
variants o f  the basic SOR algorithm  proposed here.
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A bstract

The paper deals w ith  an application o f  the extended shake-dow n m echanical m odel and global-local version  o f  the M eshless Finie 
D ifference M ethod  (M FD M ) to  determ ine residual stresses in bodies o f  revolution subject to sim ulated contact loads. R ailroad ve
hicle w heel subject to sim ulated service load  is analyzed as an engineering exam ple.

Keywords: plasticity, shakedown, hardening, residual stresses. Meshless Finite Differences

1. In tro d u c tio n

The presen ted  research  has been centered on developm ent 
and testing  o f  the  num erical m odel to determ ine residual 
stresses in  bod ies o f  revolution  m ade o f  elastic plastic m aterial 
exhibiting hardening and subject to sim ulated contact loads, 
since the so far u sed  set o f  M eshless F inite D ifference (M FD) 
based com puter program s to calculate residual stresses arising 
in bodies subject to  loads exceeding their elastic bearing ca
pacity  by  the shakedow n approach [6,7] has been lim ited to 
prism atic bodies and cartesian  coordinate systems.

Such p rob lem  o f  residual stresses in railroad car w heels 
has been prev iously  analyzed [2] using shakedown form ulation
[5] for the elastic perfectly  plastic m aterial and H ybrid Finite 
E lem ent M ethod (H FEM ) com putational model. It is believed, 
that the application  o f  m ore accurate m aterial m odel [6], taking 
account o f  k inem atic harening properties exhibited by w heel 
m aterial, w ill u ltim ately  lead  to better and m ore precise de
scription o f  phenom ena influencing the wheel service life, in
cluding the substantial decrease in peak values o f  
circum ferential residual stress (as m ay be  expected by analogy 
to the railroad  rail [8]).

2. S o lu tion  a p p ro a c h  ap p lied  a n d  co m p u te r  im p lem en ta tion

The shake-dow n m echanical m odel [5], generalized to  al
low  for the k inem atic hardening o f  m aterial [6] and used as a 
basis fo r developm ent o f  the p roper m odified num erical model, 
m ay be defined in  the follow ing two steps:
I  calculate the correlation m atrix  A -,^ :

djj=AVkrz1j (1)
solving the follow ing nonlinear constrained optim ization prob
lem  for se lf  equ ilib ra ted  stresses oj- as a  function o f  plastic 
distorsions ej- :

m i n  0 ( c J ) ,  0 ( o J )  =  J • Cijk, ■ o f  • dV-  J e j  • o f  ■ dV (2 )Of V V

at:

ofy  = 0 , in V  - internal equilibrium  conditions (3)

o f  • rij = 0  , on 3V - static boundary conditions (4)

I I  find e -  w hich m inim ize the total com plem entary energy 
functional:

m in  'F ( e J ) ,  «P(e$) =  J e ^ -  ATghlJ■ Cm, ■ Aklmn ■ ePmn ■ dV , ( 5 )% V
at:

®((Aghii- Ighij c ) - e pj + a l  + a j j ) - i < 0  , (6)

in V  - yield conditions

where:

c  =  | q j  , - hardening param eter.

The follow ing denotations hold  in (1) - (6): 
o f  - residual stresses arising in considered  body, due to ac

tual applied loads,
E?• - p lastic strains,
o ^  - elastic stresses (stresses calculated  as i f  the analyzed 

body deform ed purely elastically under the  current load
ing program ),

afj - stresses due to therm al (heating due to  braking) load 
(denoted as o |  in [4]),

Aghij - correlation m atrix  linking p lastic  strains and  residual 
stresses,

Ighij - un it m atrix,
E  - Y oung m odulus,
H  - hardening m odulus,
Ciju - elastic com pliance matrix.

The necessary m odifications o f  the previously  developed 
com puter code u tilizing  the M eshless F in ite D ifference nu 
m erical m odel dealt w ith the changed (cylindrical) coordinate



system . T hese included the m odified integration schem es in 
form ulas (2) and  (5) o f  the form ulation listed above and proper 
defin ition  o f  the  internal equilibrium  constraints. R equire
m ents specific to the w heel analysis also force the application 
o f  additional contro l loop w ithin the program . This is to ac
count fo r the influence o f  high  speed braking (localized heat
ing) on residual stress levels in the wheel. The changing 
therm al stresses are dealt w ith  w ithin th is loop in such a  m an
ner, that the  residual stresses are calculated step by  step for 
each tem perature level. Such an approach to a h igh  extent re
sem bles the w ay  the "w heel w andering problem " is analyzed in 
a  railroad  rail.

The m odified  code has been tested on a  w heel problem  
solved previously  using the H ybrid Finite E lem ent com puta
tional m odel and com puter code developed according to it [2], 
The necessary  elastic solutions have been found using code de
veloped in D O T  [1],

F or the purpose o f  calculations the follow ing m aterial data 
have been assum ed:
W heel: U S type 32 ' M U  com m uter vehicle wheel,
Y oung m odulus: E  =  206.832 GPa,
Poisson's ratio: v  =  0.3,
C ontact load  P  =  77.84 kN.

T hese values have been  chosen as to  realistically represent 
the conditions existing in standard operating practice on the 
A m erican railroads.

3. N u m e ric a l re su lts

So far, only com parative calculations have been perform ed 
for one case o f  load  located on the running surface o f  the wheel 
on one nodal ne t in  the  w heel cross-section. Thus no hardening 
has been assum ed ( c  =  0 in  form ula (6)) w hich is necessary 
fo r the resu lts to  be com parable w ith [2], Peak values o f  deter
m ined residual stresses and stresses com puted previously on 
the  sam e m esh in [2] seem  to indicate, that:
♦ a  very  good agreem ent exists betw een recent results and 

residual stresses com puted  previously [2] in  term s o f  
general location and size o f  tensile/com pressive zones, 
locations o f  poin ts w ith  extrem e values o f  residual stresses 
- th is indicates valid ity  o f  the  approach used,

♦ the  coincidence in  peak  stress levels is quite rem arkable 
considering the nature o f  applied load,

♦ certain  d iscrepancies v isib le, notably in  the contour plots 
o f  cj/r residual stress are in  the author's oppinion to a high 
exten t attributable to the h igher sensitivity o f  M FD M  vs. 
H FEM  to abrupt changes in the nodal m esh density (for 
instance tw o m axim um s along the axis o f  sym m etry o f  
applied load, tw o local m axim um s along the horizontal line 
o f  m esh density  change).

Currently the w ork is centered on  an im proved num erical 
integration procedure to be  applied  in  the  areas o f  changing 
nodal density, w hich  to  the authors oppinion m ay allevate the 
problem s attributable to abrupt m esh density  changes in  the 
transition zone betw een the plastic  region w ith  h igh  level o f  re
sidual stresses and he adjacent elastic area affected  b y  it. The 
w ork is currently conducted as well on  enforcem ent o f  incom 
pressibility  constraint on the p lastic  strains e j  presen t in the 
form ulas (1), (2), (5), (6). It is believed, tha t such developm ent 
m ay  im prove the quality  o f  p lastic  strains determ ined, and  
have a beneficiary influence on the efficiency o f  optim ization 
algorithm s used to solve the constrained nonlinear optim ization 
problem  (5), (6) as w ell (significantly  reduced num ber o f  deci
sion variables).

The m ost up to date num erical results w ill be  presen ted  at 
the conference.

4. R eferences

[1] Gordon, I ,  Estimation o f  residual stresses in railroad car 
wheels resulting from  manufacture and service loading, 
M aster Thesis, T ufts U niv., M edford, M A , 1998.

[2] Holow inski, M ., Bobrov, E .S., Estimation o f  Actual Resid
ual Stresses Due to Braking and Contact Loading o f  Rail 
Vehicle Wheels, Final Report, D O T/FR A /O R D -96/02, 
1996.

[3] Krok, J., O rkisz, J., 3D analysis o f  elastic stresses in a 
railroad rail induced by rolling contact with varying con
tact zone by the FEM /MFDM based Generalized Finite 
Strip Method, F inal Rpt. to the U S D O T, FR A , W ashing
ton D C , 1998.

[4] Orkisz, J., R esidual stress analysis in railroad  car w heels 
working in service conditions, Theoretical and Applied 
Mechanics, 1-2, 28, 1990 (in polish).

[5] Orkisz, J., C ecot, W ., P rediction o f  actual residual stresses 
resulting from  cyclic loading in k inem atic hardening m ate
rial, Proc. Int. C onf COMPLAS V, B arcelona, pp. 
1879-1891, 1997.

[6] Pazdanow ski, M ., M eshless F inite D ifference M ethod  A p
plication to the R esidual S tress A nalysis, Proc. X IV  
PCCMM, R zeszow , pp. 186-187,1997.

[7] Pazdanow ski, M ., A pplication o f  the  G eneralized  F inite 
D ifference M ethod to A nalysis o f  R esidual S tresses in 
Bodies Subject to  Cyclic Loads, Ph.D . Thesis, Cracow , 
1994 (in  polish).

[8] Pazdanow ski, M ., M FD M  residual stress analysis in rail
road rails with kinematic hardening o f  material accounted 
fo r , F inal Rpt. to  the U S D O T, FR A , W ashington D C , 
2000.



CMM-2003 -  C om pu ter M eth o d s in M echanics June 3-6,2003, Gliwice, Poland

Development of /̂ -adaptive finite element analysis of residual stresses
by the Zarka model

W i t o l d  C e c o t

Cracow University of Technology 
ul. Warszawska 24, 31-155 Krakow, Poland 

e.mail: plcecot@cyf-kr.edu.pl

Sum m ary

T he p ap e r addresses developm ent o f  num erical im plem entation o f  the  Z arka shakedow n m ethod. T he resu lting  b oundary  value 
p rob lem  is d isc re tized  b y  the  h -adap tive  finite elem ent m ethod. Since the problem  is nonlinear, tw o erro r estim ates w ere  used  fo r m esh 
refinem ent. T he exp lic it residual one controls accuracy o f  the  m om entum  balance w hile the  in terpola tion  erro r estim ate  contro ls the 
p lastic  strain  approx im ation . A daptation  significantly increased efficiency o f  the  num erical analysis in  com parison w ith  the  un ifo rm  
m esh  refinem ent.

T he p ap e r p resen ts also  validation  tests o f  the Z arka approach and its application to  the  analysis o f  se lected  eng ineering  prob lem s 
w ith  special a tten tion  p a id  to re liab ility  o f  the m odeling as w ell as o f  the  num erical analysis. T he tests confirm  possib ility  o f  a  proper, 
fo r eng ineering  purposes, estim ation  o f  residual stresses by  the Z arka shakedow n approach.

Keywords: shakedown, error estimate, adaptive FEM

A b s t r a c t

N um erica l analysis o f  residual stresses resulting  from  cyclic 
load ing  w ith  arb itrary  am plitude m ay  be  done either by  a  very 
tim e consum ing  increm ental m odel o r b y  a  m uch faster direct, 
shakedow n approach . O ne o f  th e  d irect approaches, based  on 
the  M artin ’s ex trem al pa th  concep t, w as p roposed in  [5] and later 
on  genera lized  fo r m aterials exh ib iting  the  kinem atic hardening
[6], T he Z ark a  m odel [8, 7] constitu tes another direct m ethod o f  
shakedow n analysis.

D evelopm ent o f  a  num erica l im plem entation  o f  the Z arka 
shakedow n m ethod  is d iscussed  in  the  paper. In  this approach, 
the  shakedow n sta te  is  de term ined  b y  appropriate selection o f  the 
m odified  back  stresses, w hich  are  defined as the difference be
tw een  residual stresses and  the  p lastic  strains m ultiplied by  the 
elastop lastic  tangen t m odulus. T h e  m odified back stresses, sim i- 
lary  as p lastic  strains, un iquely  determ ine the  residual self-stress 
field, and  m u st be  such, th a t the  resu lting  stresses are both  plasti
ca lly  and  sta tica lly  adm issib le . T hese  tw o conditions are stisfied 
in  an iterative p rocess. W henever the  stresses exceed the yield 
condition , a  local p ro jec tion  p roposed  by  Z arka is perform ed. 
T hen  in  o rd er to  sa tisfy  th e  equ ilib rium  equations w e use the finite 
elem ent m ethod  in  th e  ^ -a d a p tiv e  version  [3], A dpativity  leads 
to  increased  com puta tional efficiency by  such m odification o f  the 
m esh  in  se lec ted  regions, th a t fo r a  given num ber o f  elem ents the 
so lu tion  is th e  m o st accurate.

T he Z ark a  m ethod  p roved  to  be  very  efficient [1, 2], 
since it  involves neither the  tim e consum ing increm en
tal analysis (classical approach) n o r the  som etim es slowly 
convergent op tim ization  p rocess (m inim ization approach).

T he objective o f  th is w ork  is a  fu rther validation  o f  the  Z arka 
approach and  developm ent o f  the num erical im plem entation  o f  
the  m odel in  the h -ad ap tiv e  finite e lem en t code. E specially  the 
follow ing topics, briefly  described below  are  p resen ted  in  the  pa 
per.

•  D iscussion  o f  equivalence o f  three m odels i.e. Z a rk a ’s, m in 
im ization  (both o f  the  shakedow n type) and  the  classical, in 
crem ental approach. T hey y ield  the  sam e resu lts in  certain  
cases, e.g. fo r m aterial w ith  k inem atic  harden ing . H ow 
ever, genera lly  the  shakedow n m odels on ly  estim ate the in 
crem ental solution.

•  C om parison o f  efficiency and  re liab ility  o f  a ’posterio ri er
ro r estim ates in  application  to  the  shakedow n m odeling , 
i.e. m athem atically  proved residual and  in terpo la tion  es
tim ates w ith  very fast b u t on ly  h eu ristica lly  justified , recov
ery type error estim ate. T he last one w orks w ell in th e  m ost 
cases bu t as w ell as the  residual estim ate it has to  b e  sup
plem ented  w ith  the  in terpo la tion  erro r estim ate o f  the  non
elastic strains.

•  A pplication o f  the  Z arka  m odel to  th e  analysis o f  se lected  
engineering problem s, i.e. evaluation o f  residual stresses in 
railroad rails.

T he Zarka shakedow n m odel and the  B odner-Partom  one re 
sult in  practically  the  sam e stresses in  the cy linder benchm ark  
problem , excep t o f  the longitudinal stress com ponent fo r com 
pressible, perfectly  p lastic m aterial. Very sim ilar conclusions 
w ere draw n in  [4], w here the  Z arka  approach  w as com pared  w ith  
the  Prandtl-R euss m odel. How ever, perfec t p lastic ity  is far from  
realistic behavior o f  m etals, therefore th is w ill n o t affec t o u r anal
ysis.
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The m inim ization  approach w as tested  so far only on the ex
am ple o f  the perfectly  p lastic, incom pressible m aterial, resulting 
in the sam e results as the o ther approaches.

In the railroad rail benchm ark  test the increm ental and shake- 
down approaches resu lt in close a x.x ar*d a vv stress com po
nents. The longitudinal residual stress (<7iZ) distributions differ 
by  m axim um  50%. In the m ost im portant, tensile area the Zarka 
results in overestim ated  solution. W hile the com pressive values 
are underestim ated.

However, the tests com pleted  so far confirm  that the Zarka 
shakedown m odel y ields reasonable results from  engineering 
point o f  view.

In the p roposed  strategy the m esh refinem ents are based  inter
changeably on  the residual and  the interpolation error estim ates. 
Even though the recovery erro r estim ate results generally in sim 
ilar convergence (Fig. 1) as the residual estim ate the last one is 
preferred due to  its be tter theoretical background.

The follow ing strategy o f  adaptation  is assum ed.

1. Evaluate the residual state by  the  Z arka approach on a given 
FEM  mesh.

2. Estim ate erro r o f  the  so lu tion  fo r each o f  the elem ents.

3. I f  the erro r is sm all enough then stop, otherw ise m odify the 
m esh, w herever it is necessary  and go to step 1.

N um erical tests show  that the m ost efficient strategy o f  adap
tation in the shakedown problem s w as to restart the com putation 
after the m esh refinem ent rather than  to transform  the solution 
and to continue the com putation  on the new mesh. Relatively 
short tim e o f  the shakedow n analysis is the m ain reason for such 
a conclusion.

C om parison o f  convergence tests obtained w ith different error 
estim ates, show n in  Fig. 1 indicates also that

- adaptive m esh refinem ent significantly reduces the num ber 
o f  necessary  unknow ns (even 2 - 3  tim es) and

- the estim ation o f  the approxim ation  quality o f  the m odified 
back stresses (analog o f  the plastic strains) can not be ne
glected.

The railroad rail in service conditions w as analyzed as an ex
am ple o f  an eng ineering  problem . The rail w as subjected to re
sultant contact loads in th e  range o f  120 kN  to 300 kN show ing 
m onotonic dependence o f  the solution in term s o f  the load. The 
resultant load was d istributed  parabolically  on an ellipsoidal area 
to sim ulate the rail/w heel contact.

Generally, w e m ay conclude that the Z arka direct m ethod re 
sults in reliable so lutions w ith  m uch less com putational effort 
then increm ental approaches, especially  in com bination w ith the 
adaptive num erical analysis.

Plans for the nearest fu ture include: solution o f  further ex
am ples (rail and w heel), as w ell as thorough com parison o f  the 
results w ith those obtained  by  the m inim ization approach.
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A bstract
The paper presents a  new  version o f  the global-local approxim ation method i.e. experim ental - theoretical approach to  analysis o f  
engineering boundary value problem s. It considers the task as inverse problem  where experimental data supplies m issing inform ation 
on the searched field. U sing this technique one may solve problem  o f  m echanics w ithout full inform ation about the state o f  the 
exam ined body. The special functional is defined, whose m inim um  gives solution o f  the problem  considered. In this version 
curvature o f  the stress field is taken into account. Such approach was successfully used  e.g. to reconstruct residual stress field in the 
cross-section o f  the railroad rail.

Keywords: experim ent, approxim ation, MWLS

1. In tro d u c tio n
The papers [1-3] presented the global-local 

approxim ation m ethod i.e. experimental - theoretical approach 
to analysis o f  engineering boundary value problems. These are 
usually  analysed b y  solving o f  the partial differential equations 
w ith boundary conditions. The m ethod is global because it takes 
into consideration m easurem ents from the whole domain and is 
local because field searched for is found at one point. W hen 
com plete inform ation on relevant problem  is unavailable, one 
m ay convert the  task  to  an inverse problem  where experimental 
data supplies m issing inform ation on the searched field. Using 
this technique one m ay solve problem  o f  mechanics without 
inform ation on the state o f  the examined body. This is 
especially true in residual state. The m easurements are available 
at discrete poin ts and are done w ith a  limited precision. 
Therefore, they  m ay be  used  only within a special functional. 
The m inim um  o f  this functional gives solution o f  the problem  
considered. The form ulation was successfully used e.g. to 
reconstruct residual stress field in the cross-section o f  the 
railroad rail. In presen t version the m ethod has been applied to 
2D  problem s. T he obtained solution is sufficiently smooth. In 
the engineering problem s, w here residual stresses are induced 
by  forces acting over small surfaces, sub-domains exist, where 
residual stresses are large. In previous versions o f  the method 
the sm oothing param eter has been chosen once for the whole 
domain. In the  cases, w here large stress gradients are present, 
such approach does no t w ork properly. Therefore, current 
version o f  the  m ethod has been im proved by considering the 
stress field curvature as well.

2. A  new  v ersion  o f  th e  g lobal - local m ethod
The global-local m ethod presents a  development o f  the 

m oving w eighted least squares global-local approximation [4- 
6]. All versions o f  the global-local m ethod have unique form, 
w hich contains truncated  expansion o f  sought field into Taylor 
series to fit experim ental data. A  norm  o f  this fit is multiplied 
by  a w eighting factor containing sm oothing param eter and 
m ultiplier responsible for inhomogeneous density o f  the 
experim ental points. This last factor is defined as surface area o f  
Voronoi polygon around given point. The expansion mentioned 
above autom atically satisfy equilibrium  equations (common for 
all solids) . R elevant error function has the form

o(f)=

KK-1 y(r(k) -r)-a '(k)
n!/2

kk-1

l?(k)- r |

|<7(k)ll
(1)

I ° k |||f(k)- f

where summation extends over all experim ental data points. 
H ere D(k), r®  and a ®  denote respectively density  w eighting 
factor, data point location and m easured stress. The m atrix norm

"||.||" is defined as |c | |  =  ( t r ( o a ) ) 1/2. This definition satisfies all

norm  requirements, and additionally is invariant to rotation o f  
the coordinate system. Symbol |||.||| denotes w eights o f  the

considered points. It is defined as r 2 +
r 2 + g 2

The param eter "g" is responsible for optim al approxim ation. 
W hen "g" is equal to zero one obtains interpolation and w hen it 
is infinite one deals w ith polynom ial approxim ation. This way 
the fitted field function is sm ooth enough and is no t "attracted" 
too much to an experim ental point. The optim al value o f  this

parameter, g  t , is found by the follow ing m inim isationopt
/  \

condition m in
g

g opt .In previous versions

o f  the global-local m ethod the same value, g opt was used  for

the whole domain. Function <E> contains several unknow n 
coefficients represents stress field sought. M inim isation o f  this 
function yields the stress field at chosen point ( r  ). A pplication 
o f  the above version to cases, where gradients o f  the sought 
field are large on a  part o f  the considered body  leads to 
oversm oothing in those regions. On the o ther hand such zones 
are usually the m ost interesting for physical interpretation o f  
problem  considered. This is a  result o f  the  assum ption, that 
parameter g  is constant in the w hole domain. N ew  param eter

g , a  function o f  the point and curvature o f  the stress field has 

been introduced here to relax this assum ptions.
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3 .  C u r v a t u r e  v e r s io n  o f  t h e  s m o o th i n g  p a r a m e t e r

The w eighting param eter g ( r )  is a following

function g ( r )  = ------- - , where value c  is a dimensionless
.*001 +  c -

K2
coefficient and curvature k(?) is defined in the domain as:

,2V/2
K(f) =

2 k

- L f d c p2k J
11̂o c

| 9 n 2 ((p )
(2)

Fig- Oxx contour line for: M FDM , classic global-local 
sm oothing and new  procedure.

and average value is now K = — f  d A  k(?) , where
A  J

A

n  (tp) =  (co s (p, s in  cp), Equation  (14) guarantees rotational 

invariance around exam ined points.

4 . A p p l i c a t i o n  t o  r e s i d u a l  s t r e s s  a n a ly s is
The above presented  sm oothing approach may be applied to 
both experim ental and num erical data. The method has been 
used  to sm oothen the  results obtained by  the MFDM . Obtained 
solution is better than a  coarse FEM  or M FDM  solution. Figures 
show contour lines o f  all stress com ponents in three situations: 
coarse M FD M  solution, GLM  (classic version) and GLM 
(curvature version developed here).

5 . F in a l  r e m a r k s
•  The global - local m ethod presented above is designed to 

reconstruct unknow n stress field satisfying theoretical 
requirem ents (here equilibrium  equation), and 
approxim ately fitting experim ental data. O ptim isation o f  
the problem  oriented functional yields required stress field.

•  A  new  version o f  the global-local m ethod proposed here 
allows for taking into consideration the case when 
approxim ated field (e.g. stress tensor) varies considerably.

•  The field searched for is obtained one poin t a t a  tim e. This 
is especially convenient i f  an answ er is required in a 
lim ited dom ain (e.g. a  crack tip  neighbourhood etc.).
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MESHLESS FDM BASED APPROACH TO ERROR CONTROL AND 

EVALUATION OF EXPERIMENTAL OR NUMERICAL DATA

Jozef Krok

Cracow University of Technology, Cracow, Poland, e-mail: plkrok@cyf-kr.edu.pl

A b stract: This work addresses the development of an approach to approximation, smoothing 

and error estimation of experimental/numerical data using the meshless FDM, and its application 

in wheel stress recovery calculations.

Keywords: Experimental data approximation, error control, meshless FDM

1 Introduction

Present research is concentrated on development of an approximation technique of experimental 

data, based on the the Meshless Finite Difference Method (MFDM).

Discrete data known at certain points often has to be transferred to other points. How to do this at 

the minimal loss of accuracy? Is it possible to measure the degree of information loss? Is it 

possible to recover additional information on the data itself-smoothness or optimal data points 

location? Answers to these questions are crucial.

The paper includes approximation of data done in a discrete from old to new (required) locations 

using MFDM approximation and formulation of "a'posteriori" error technique to trace loss of 

accuracy (evaluation) of original data, using different "error norms". Evaluation of experimental 

points density in experimental data has been done, taking into account equal error distribution. 

Analysis of the wheel saw cut data [1,3], is presented.
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A MESHLESS FDM APPLIED TO A POSTERIORI ERROR ANALYSIS 
OF EXPERIMENTAL DATA BY PHYSICALLY BASED GLOBAL 

METHOD APPROXIMATION

J. Magiera

Cracow University of Technology, Civil Engineering Department, 

24 Warsaw St., 31-155 Cracow, POLAND

Abstract

In the paper proposed is extension of the recently developed and investigated new approach to 

physically based enhancement of experimental data by the so called global method (GM) to the 

field of a posteriori error estimation of experimental data. Unlike the classical methods of 

experimental data analysis, which frequently limit themselves to merely statistical estimates of 

the possible experimental error bounds, this new approach makes it possible to estimate the 

actual experimental error. It is possible thanks to application of the concept of physically based 

approximation for data enhancement (smoothing), which enriches the experimentally determined 

data with a priori knowledge coming from all the possible sources, including theory, statistics, 

other experiments performed in parallel, or even certain heuristic postulates should they be 

rendered reasonable.

In the paper presented are basic concepts, a general formulation of the method followed by 

exemplary results for a test problem.



A MESH GENERATOR FOR AN ADAPTIVE MULTIGRID MFD/FE

METHOD

J. Orkisz, P. Przybylski, I. Jaworska

Cracow University of Technology, Civil Engineering Department,

24 Warsaw St., 31-155 Cracow, POLAND; e-mail: plorkisz@cyf-kr.edu.pl

Abstract. The original method of mesh generation, based on mesh density control, is discussed 

here. It is designed for and useful in adaptive analysis, as it is capable of various mesh 

modifications especially focused on highly efficient multigrid solution approach, carried out by 

means of the meshless FD and FE methods. Given are problem formulation, followed by 

algorithms, preliminary tests and applications.

Key words: Adaptive mesh generator, Mesh density control, multigrid, MFDM, FEM

1 Introduction

The main objective of this research is to develop an effective unstructured 2D and 3D-mesh 

generator fulfilling requirements of highly efficient adaptive analysis and multigrid solution 

approach [1]. All algorithms are designed to work properly with both the adaptive meshless 

finite difference (MFD) and FE methods. The generator produces various types of output data. 

These include information on series of meshes generated during adaptive refinement process. 

Each mesh contains topological information on MFDM stars and simplex elements (for the FE 

and BE methods).

The research comprises: node generation and modification (node insertion, removal and 

shifting), search for nodes in the neighborhood of a considered point (node), domain partition

mailto:plorkisz@cyf-kr.edu.pl


Papers published and submitted to Scientific Conferences
July 2000 -  June 2003

Authors Title References
1. Cecot W., 

Rachowicz W.
Adaptive solution of problems 
modeled by unified state variable 
constitutive equations

Computer Assisted 
Mechanics and Engineering 
Sciences, 7, 2000, 479-492

2. Gnaupel- 
Herold T., 
Prask H.J., 
Gordon J., 
Magiera J.

Effect of Grinding Strategy on 
Accumulation of Damage in Rails: 
Neutron Diffraction Investigation of 
Residual Stresses in Transverse and 
Oblique Cut Rail Slices, [paper 
submitted for:]

6th International Conference 
on Residual Stress (ICRS6) 
in Oxford, July 10-12, 2000

3. Magiera J. Enhanced 3D Analysis of Residual 
Stress in Rails by Physically Based Fit 
to Neutron Diffraction Data

6-th International Conference 
on Contact Mechanics and 
Wear of Rail/Wheel Systems 
(CM2000), Tokyo, Japan, 
July 25-28, 2000

4. Orkisz J Evaluation of residual stresses and 
strains in railroad rails and vehicle 
wheels

33rd Solid Mechanics 
Conference, Zakopane, 
Sept.5-9, 2000

5. Pazdanowski
M.

On estimation of residual stresses in 
prismatic bodies made of strain 
hardening materials

33rd Solid Mechanics 
Conference, Zakopane, 
Sept.5-9, 2000

6. Orkisz J., 
Midura G.

Elastic-plastic analysis of a beam 
modeling rails under moving contact 
loading,

12td Inter-Institute Seminar 
on Non-linear Computational 
Mechanics, Budapest, 
Hungary, October 27-29, 
2000

7. Orkisz J. Recent Advances in Evaluation of 
Residual Stresses in Railroad Rails

12th Inter-Institute Seminar 
on Non-linear Computational 
Mechanics, Budapest, 
Hungary, October 27-29, 
2000

8. Kogut J., 
Orkisz J

Neural networks approach to 
theoretical predictions of residual 
stresses in railroad rails, Symposium 
on Methods of Artificial Intelligence in 
Mechanics and Mechanical 
Engineering

AI-MECH 2000, Gliwice, 
Nov. 15-17, 2000, 193-196



9. Cecot W. Adaptive finite element analysis of 
certain shakedown problems

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001

10. Cecot W., 
Orkisz J., 
Midura G.,

Estimation of railroad rail residual 
deformation after roller straightening 
process

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001

11. Karmowski W. 
Kogut J., 
Orkisz J.,

Physically based postprocessing of 
results on neutral network stress 
analysis

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001

12. Karmowski W. 
Orkisz J.,

Application of physically based 
approximation to a’posteriori 
estimation of solution errors

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001

13. Kogut J., 
Orkisz J.

Neural network analysis of residual 
stresses in railroad rails and its error 
estimation

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001

14. Krok J. An extended approach to error control 
in experimental and numerical data 
smoothing using the meshless FDM

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001

15. Krok J., 
Cecot W., 
Pazdanowski 
M.

Shakedown analysis of residual 
stresses in railroad rails with kinematic 
hardening taken into account

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001

16. Krok J., 
Gordon J.

Investigation of influence of tangential 
transverse and longitudinal contact 
loadings on stresses in railroad rails

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001

17. Krok J., 
Orkisz J.

A unified approach to the adaptive 
FEM and meshless FDM

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001

18. Magiera J. Reconstruction of residual stress in 
railroad rails based on neutron 
diffraction data

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001

19. Magiera J., 
Orkisz J.

Application of the meshless finite 
difference method to physically based 
approximation of experimental data by 
the global method

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001



20. Orkisz J. Methods of analysis of residual 
stresses in railroad rails

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001

21. Orkisz J., Recent advances in the meshless 
finite difference method

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001

22. Pazdanowski
M.

Recent developments in shake-down 
analysis of elasto-plastic bodies 
exhibiting hardening

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001

23. Przybylski P., 
Orkisz J.

Mesh generator for adaptive analysis 
using meshless FD and FE methods

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001

24. Skrzat A., 
Orkisz J., 
Krok J.

Residual stress reconstruction in 
railroad car wheels based on 
experimental data measured at saw 
cut test

2nd European Conf. on 
Computational Mechanics, 
Cracow, Poland, June 26-29, 
2001

25. Orkisz J. Meshless finite difference method Fourth International 
Conference on Parallel 
Processing and Applied 
Mathematics, Nat§czow, 
Poland, Sept. 9-12, 2001

26. Jaworska I. An advanced graphic modeler for an 
adaptive GFD/FE analysis

13th Inter-Institute Seminar 
for Young Researchers, 
Vienna, Austria, October 26- 
28, 2001

27. Krok J. A system NAFDEM of adaptive, 
combined meshless FD/FE non-linear 
analysis of boundary value problems

13th Inter-Institute Seminar 
for Young Researchers, 
Vienna, Austria, October 26- 
28, 2001

28. Przybylski P. An advanced mesh generator for 
GFD/FE analysis

13th Inter-Institute Seminar 
for Young Researchers, 
Vienna, Austria, October 26- 
28, 2001

29. Orkisz J. Higher order meshless finite difference 
approach

13th Inter-Institute Seminar 
for Young Researchers, 
Vienna, Austria, October 26- 
28, 2001



30. Kogut J., 
Orkisz J

Updated neural networks approach to 
the theoretical predictions of residual 
stresses in railroad rails in service 
conditions

AI-MECH 2001 -  Methods of 
Artificial Intelligence in 
Mechanics and Mechanical 
Engineering, ISBN 83- 
914632-1-4, Gliwice, Nov. 14- 
16, 2001

31. Orkisz J. Meshless Finite Difference Method -  
Recent Developments

WCCM V - Fifth World 
Congress on Computational 
Mechanics, Vienna, Austria, 
July 7-12, 2002

32. Cecot W. Application of Zarka’s model to 
shakedown analysis

WCCM V - Fifth World 
Congress on Computational 
Mechanics, Vienna, Austria, 
July 7-12, 2002

33. Krok J. A unified approach to the adaptive 
FEM and meshless FDM

WCCM V - Fifth World 
Congress on Computational 
Mechanics, Vienna, Austria, 
July 7-12, 2002

34. Karmowski W. Theory aided interpretation of 
experiments -  application in solid 
mechanics

DAS2002-19tn Danubia-Adria 
Symp.on Experimental 
Methods in Solid Mechanics, 
Polanica Zdroj, Poland, 
Sept.25-28, 2002

35. Karmowski W. 
Orkisz J.

Extended global-local method of data 
smoothing and its application in 
residual stress analysis

DAS2002-f 9m Danubia-Adria 
Symp.on Experimental 
Methods in Solid Mechanics, 
Polanica Zdroj, Poland, 
Sept.25-28, 2002

36. Magiera J., 
Orkisz J.

Physically based approximation of 
experimental data by the global 
method

DAS2002-19m Danubia-Adria 
Symp.on Experimental 
Methods in Solid Mechanics, 
Polanica Zdroj, Poland, 
Sept.25-28, 2002

37. Magiera J. A 3D rail residual stress recovery 
method by physically based fits to 2D 
neutron diffraction data sets

DAS2002-‘/9rn Danubia-Adria 
Symp.on Experimental 
Methods in Solid Mechanics, 
Polanica Zdroj, Poland, 
Sept.25-28, 2002

38. Kogut J., 
Orkisz J.

Application of radial basis neutral 
networks to residual stresses in rails 
under wandering contact loading

AI-METH 2002 -  3 ° 
Symp.on Methods of 
Artificial, Gliwice, Poland, 
Nov.13-15, 2002

39. Magiera J. Enhanced 3D analysis of residual 
stress in rails by physically based fit to 
neutron diffraction data

WEAR, vol.253/1-2, 2002, 
228-240



40. Krok J. An extended approach to error control 
in experimental and numerical data 
smoothing and evaluation using the 
Meshless FDM

Revue europeenne des 
elements finis, vol.11, no 7- 
8,2002, 913-945.

41. Orkisz J., 
Karmowski W. 
Magiera J., 
Skrzat A,

Physically based reconstruction of 
residual stresses using experimentally 
measured data

MACSI-net Workshop on 
Parameter identification in 
structural and materials 
engineering, incorporating a 
IALAD Minisymposium on 
Health monitoring and 
inverse problems in dam 
engineering, Milan, 
November 20-22, 2002.

42. Orkisz J., 
Cecot W., 
Karmowski W. 
Krok J., 
Pazdanowski 
M.

Shake-down approach to analysis of 
residual stresses in railroad rails

IMPLAST'03 - 8th 
International Symposium on 
Plasticity and Impact 
Mechanics, Delhi, India, 16 - 
19 March 2003.

43. Skrzat A., 
Orkisz J.

Residual stress reconstruction in 
railroad passenger and freight car 
wheels

CMM 2003 - 15th 
International Conf. On 
Computer Methods in 
Mechanics, Gliwice/Wista, 
Poland, 3-6 June 2003

44. Midura G., 
Orkisz J.

Elastic-plastic bending of beam rail 
model.

CMM 2003 - 15th 
International Conf. On 
Computer Methods in 
Mechanics, Gliwice/Wista, 
Poland, 3-6 June 2003

45. Jaworska I., 
Przybylski P.

On graphic modeler for adaptive 
meshless FD and FE analysis

CMM 2003 - 15th 
International Conf. On 
Computer Methods in 
Mechanics, Gliwice/Wista, 
Poland, 3-6 June 2003

46. Krok J. A unified approach to the adaptive 
FEM and meshless FDM in physically 
nonlinear problems

CMM 2003 - 15th 
International Conf. On 
Computer Methods in 
Mechanics, Gliwice/Wista, 
Poland, 3-6 June 2003



47. Krok J., 
Orkisz J.

On development of MWLS 
approximation for adaptive meshless 
FDM

CMM 2003 - 15th 
International Conf. On 
Computer Methods in 
Mechanics, Gliwice/Wista, 
Poland, 3-6 June 2003

48. Krok J. An adaptive procedure of 
experimental data collection based on 
a’posteriori error estimation of data 
using the meshless FDM

CMM 2003 - 15th 
International Conf. On 
Computer Methods in 
Mechanics, Gliwice/Wista, 
Poland, 3-6 June 2003

49. Orkisz J., 
Krok J.

Recent advances in the meshless 
methods selected topics

CMM 2003 - 15th 
International Conf. On 
Computer Methods in 
Mechanics, Gliwice/Wista, 
Poland, 3-6 June 2003

50. Przybylski P., 
Orkisz J.

On adaptive mesh generator for 
meshless FD and FE methods

CMM 2003 - 15th 
International Conf. On 
Computer Methods in 
Mechanics, Gliwice/Wista, 
Poland, 3-6 June 2003

51. Orkisz J., 
Shaheed S.

On acceleration of the Gauss-Seidei 
method for solution of simultaneous 
linear algebraic equations

CMM 2003 - 15th 
International Conf. On 
Computer Methods in 
Mechanics, Gliwice/Wista, 
Poland, 3-6 June 2003

52. Pazdanowski
M.

Recent developments in estimation of 
residual stresses in railroad car 
wheels made of material exhibiting 
kinematic hardening

CMM 2003 - 15th 
International Conf. On 
Computer Methods in 
Mechanics, Gliwice/Wista, 
Poland, 3-6 June 2003

53. Cecot W. Development of h-adaptive finite 
element analysis of residual stresses 
by the Zarka model

CMM 2003 - 15th 
International Conf. On 
Computer Methods in 
Mechanics, Gliwice/Wista, 
Poland, 3-6 June 2003

54. Karmowski W. 
Orkisz J.

Application of the extended global- 
local data smoothing to residual stress 
analysis

CMM 2003 - 15th 
International Conf. On 
Computer Methods in 
Mechanics, Gliwice/Wista, 
Poland, 3-6 June 2003



55. Krok J. Meshless FDM based approach to 
error control and evaluation of 
experimental or numerical data

Second MIT Conf. on 
Computational Fluid and 
Solid Mechanics, 
Cambridge, MA, USA, 
17-20 June, 2003.

56. Magiera J. A meshless FDM applied to 
a’posteriori error analysis of 
experimental data by physically based 
global method approximation

Second MIT Conf. on 
Computational Fluid and 
Solid Mechanics, 
Cambridge, MA, USA, 
17-20 June, 2003.

57. Orkisz J., 
Przybylski P., 
Jaworska 1.

A mesh generator for an adaptive 
multigrid MFD/FE method

Second MIT Conf. on 
Computational Fluid and 
Solid Mechanics, 
Cambridge, MA, USA, 
17-20 June, 2003.



Development of Advanced Methods for Theoretical 
Prediction of Shakedown Stress States and Physically 
Based Enhancement of Experimental Data, Volume III, 
Phase VIII, 2003, Cracow University of Technology,
02-Track-Train Dynamics


